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Abstract: This paper quantifies the asymptotic order of the largest singular value
of a centered random matrix built from the path of a Block Markov Chain (BMC)
[5]. Given a path X0, X1, . . . , XTn started from equilibrium, we construct a random
matrix N̂ that records the number of transitions between each pair of states. We
prove that if ω(n) = Tn = o(n2), then ‖N̂ −E[N̂]‖ = ΩP(

p

Tn/n). We also prove that if
Tn = Ω(n ln n), then ‖N̂ − E[N̂]‖ = OP(

p

Tn/n) as n→∞; and if Tn = ω(n), a sparser
regime, then ‖N̂Γ −E[N̂]‖ = OP(

p

Tn/n). Here, N̂Γ is a regularization that zeroes out
entries corresponding to jumps to and from most-often visited states. Together
this establishes that the order is ΘP(

p

Tn/n) for BMCs.

Motivation
The goal in typical community detection problems is to
infer which state belongs to which cluster from the edges
of a graph where a hidden community structure exist.
However, sometimes observations of the edges are not
independent as the next example shows.

Example 1: Among n music tracks we choose a genre at
random and then a track in that genre. The choice usually
depends on the previous tracks we have listened to so far.

Rock
Track i1

Classical
Track i2

Jazz
Track i3

· · · Folk
Track iTn

Block Markov Chains (BMCs)[5] allow for time depen-
dency in its observations. An example of a BMC with two
clusters:

Cluster V1

Cluster V2
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Example 2: For a transition from cluster i ∈ {1,2}, clus-
ter 1 or 2 is chosen �rst with probability pi1 and 1 − pi1 re-
spectively. Next state from the cluster is chosen uniformly at
random. This process generates a trajectory (X t)

Tn
t=1.

The frequency matrix of a BMC
Suppose we have n states. N̂ records the transitions be-
tween each pair of states in a trajectory of length Tn, where

N̂x y =
Tn−1
∑

t=0

1[X t = x , X t+1 = y] for x , y ∈ [n]. (1)

We study ‖N̂ −E[N̂]‖ as n→∞ because:
1. Bounds on this object provide performance guaran-

tees for spectral clustering algorithms [3, 4].
2. Weakly dependent entries of N̂ prevent from directly

using typical bounding methods making the problem in-
teresting.

3. Sparsity of N̂ is determined by the length of the
trajectory Tn. Different regimes are expected, as is with
Erdös–Rényi random graphs (ERRGs) [1, 2].

Spectral Norm of N̂ −E(N̂)
Our first result is a lower bound:

Proposition: If ω(n) = Tn = o(n2), then there exist con-
stants b, eb > 0 independent of n and an integer n0 ∈ N+ such
that for all n≥ n0,

P(‖N̂ −E[N̂]‖ > b
Æ

Tn/n)≥ 1− exp(−eb(Tn n)). (2)

Our second result is an order-wise matching upper
bound to ‖N̂ −E[N̂]‖. However, we have to regularize N̂
depending on the regimes:

Sparse — Tn = o(n ln n) Dense — Tn = Ω(n ln n)

In the sparse regime, we set to zero states that are
most visited (see reddest state above) yielding a trimmed
matrix N̂Γ .

Theorem: The following holds:
(a) If Tn = Ω(n ln n), then ‖N̂ −E[N̂]‖ = OP(

p

Tn/n).
(b) If Tn =ω(n) and Γ c is a set of size bne−Tn/nc containing the
states with highest number of visits, i.e., with the property
that miny∈Γ c N̂[n],y ≥maxy∈Γ N̂[n],y , then

‖N̂Γ −E[N̂]‖ = OP(
Æ

Tn/n). (3)

Proof sketch
We use an ε-net argument and separate contributions
to the norm in two terms. We then leverage concentra-
tion inequalities for Markov chains and exploit the low
rank structure of BMCs to bound the terms. This proof
method draws inspiration from an analogous result in
sparse ERRG [2].

Conclusion
In BMCs, ‖N̂ − E[N̂]‖ = ΘP(

p

Tn/n), a first step towards
understanding the limiting distribution of the spectrum.
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