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Sequential data, such as text or DNA, are naturally mod-
elled by Markov chains. There has been recent interest in
spectral algorithms for community detection in Markov
chains [1, 2]. For instance, one can use the singular value
decomposition of the empirical transition matrix bP. The
resulting reduction in the size of the state space then al-
lows for extraction of actionable insight from the data.

Block Markov chains
A Block Markov chain (BMC) is the Markov chain ana-
logue of the classical stochastic block model [3]. Let
V := {1, . . . , n} be a large state space with partition V =:
V1∪ . . .∪VK and consider a K ×K transition matrix p of an
irreducible acyclic Markov chain on {1, . . . , K}. A BMCwith
cluster transition matrix p is a Markov chain with transi-
tion matrix Px ,y = pi, j/#V j for (x , y) ∈ Vi×V j . We let n tend
to infinity and consider a BMC sample path X := (X t)ℓt=0
with ℓ= λn2 + o(n2) and #V j = α jn+ o(n).

Associated to the sample path X we have two n × n
random matrices, denoted ÒN and bP, given by:

ÒNi j =Number of transitions i→ j; bPi j = ÒNi j/

n
∑

k=1

ÒNik.

It has recently been shown that ÒN has K informative sin-
gular values of size Θ(ℓ/n) whereas the remaining bulk
has magnitude O(

p

ℓ/n) [4].

Figure 1: A BMC with cluster transition matrix p = [[0.9, 0.1,0]
, [0, 0.1,0.9], [0.3,0, 0.7]].

Dependence and variance profiles
We are concerned with asymptotics of the bulk of the sin-
gular values of ÒN and bP. These random matrices intro-
duce two main challenges:

1. The entries are dependent.

2. The entries do not have identical variance.

In this context we define a class of dependent random
matrices, called almost uncorrelated random matrices with
a variance profile, whose asymptotic spectral distribu-
tions can be determined using themomentmethod. This
generalizes a result in [5] to include the possibility of vari-
ance profiles.

Coupling argument
Establishing limiting singular value distributions for ÒN
and bP may be reduced to the statement that M := ÒN −
E[ÒN] is approximately uncorrelated. A coupling argu-
ment is used to construct a pair of chains (X , Y ) with
MX ,i1 i2 independent of Y . Then,
E[M m1

X ,i1 i2
· · ·M mR

X ,iR jR
]≈ E[M m1

X ,i1 j1
M m2

Y,i2 j2
· · ·M mR

Y,iR jR
]

= E[M m1
X ,i1 j1
]E[M m2

Y,i2 j2
· · ·M mR

Y,iR jR
]

which is precisely what it means to be approximately un-
correlated.

Figure 2: Construction of the pair (X , Y ): the chains are allowed to di-
verge for a short period of time whenever either one uses e1 := i1 j1.

Main result: singular values of bP and ÒN
Theorem. The empirical singular value distribution νpnbP con-
verges weakly in probability to a measure ν whose symmetriza-
tion sym(ν) has Stieltjes transform s(z) =

∑K
i=1 αi(ai(z) + aK+i(z))/2

where the ai(z) satisfy the following system of equations

ai(z)
−1 = z −

K
∑

j=1

λ−1π(i)−1αi pi, j aK+ j(z)

a−1
i+K(z) = z −

K
∑

j=1

λ−1π( j)−1α−1
i α

2
j p j,i a j(z)

for i = 1, . . . , K . Here π is the equilibrium distribution of p. A similar
system of equations with different coefficients describes the Stieltjes
transform of ν
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Figure 3: ÒN/pn and pnbP and frequency-based histograms of their sin-
gular values when λ = 2, α = (0.5, 0.4,0.1) and n = 1000 with p as in
Figure 1. Observe that our theoretical result, depicted as the continous
curve, matches well with the empirical distribution.
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