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Part I

Our idea and the motivation
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Our idea: Can we do clustering in Markov Chains (MCs)?

X0X1

. . .

XT

Figure: The goal of this paper is to infer the hidden cluster structure underlying a Markov chain
{Xt}t≥0, from one observation of a sample path X0,X1, . . . ,XT of length T .
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The motivation

Clustering in MCs is motivated by Reinforcement Learning (RL) on large state spaces.

RL has recently received substantial attention due to its wide spectrum of applications
(robotics, games, medicine, finance, etc), or more popularly said, artificial intelligence.

In RL, the objective is to quickly identify an optimal control policy by observing a
trajectory of a Markov chain.

Unfortunately, the time to learn the best policies using e.g. Q-learning increases
dramatically with the number of states.

In practical problems however, different states may yield similar reward and exhibit
similar transition probabilities. In other words, states could maybe be clustered.
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Part II

The literature and our model
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Clustering in Stochastic Block Models (SBMs)

SBMs generate random graphs with groups of similar vertices.

E.g. Suppose V = V1 ∪ V2. An edge is drawn between x , y ∈ V w.p. p ∈ (0, 1) if they
belong to the same group, and w.p. q ∈ (0, 1), p 6= q otherwise.

The goal is to infer the clusters from such an
observed random graph.

Clustering in Block Markov Chains Sanders, Proutière, Yun 6/44



Clustering in Stochastic Block Models (SBMs)

SBMs generate random graphs with groups of similar vertices.

E.g. Suppose V = V1 ∪ V2. An edge is drawn between x , y ∈ V w.p. p ∈ (0, 1) if they
belong to the same group, and w.p. q ∈ (0, 1), p 6= q otherwise.

The goal is to infer the clusters from such an
observed random graph.

Clustering in Block Markov Chains Sanders, Proutière, Yun 6/44



Fundamental limits for clustering in SBMs in literature
Much literature exists on when and how we can cluster in SBMs.

To start, many papers laid foundation for the discovery of the fundamental limits:1

Including: Holland, Laskey, Leinhardt 1983; Bui, Chaudhuri, Leighton, Sipser 1984; Boppana 1987; Dyer,
Frieze 1989; Snijders, Nowicki 1997; Jerrum, Sorkin 1998; Condon, Karp 1999; Carson, Impagliazzo
2001; McSherry 2001; Bickel, Chen 2009; Rohe, Chatterjee, Yi 2011, and more.

Theorem (Decelle, Krzakala, Moore, Zdeborova 2011; Massoulié 2014; Mossel, Neeman, Sly 2015)
If p = a/n, q = b/n, and |V1| = |V2|, then a − b ≥

√
2(a + b) is a necessary and

sufficient condition for the existence of algorithms that can detect the clusters.

Theorem (Abbe, Bandeira, Hall, 2014; Mossel, Neeman, Sly 2014)
If p = a ln n/n, q = b ln n/n, then |

√
a −
√
b| >

√
2 allows for exact recovery.

In both cases, efficient algorithms were also developed that achieve the thresholds!

1“Community detection and SBMs: recent developments”, Emmanuel Abbe, 2017 gives overview.
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Clustering in Block Markov Chains (BMCs)

Our work also investigates when and how we can cluster, but then in BMCs!

Cluster V1

Cluster V2

Xt

1−p1,2
|V1|−1

p1,2
|V2|

p2,1
|V1|

1−p2,1
|V2|−1

Let {Xt}t≥0 be a BMC with parameters (n, α, p). Its transition matrix is given by

Px ,y ,
pσ(x),σ(y)

|Vσ(y)| − 1[σ(x) = σ(y)]1[x 6= y ] for all x , y ∈ V.

Its equilibrium distribution will be denoted by Πx for x ∈ V.
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Structure of the transition matrix

Here’s an example transition matrix for K = 3 clusters:

P =



0 p1,1
p1,2

3
p1,2

3
p1,2

3
p1,3

5
p1,3

5
p1,3

5
p1,3

5
p1,3

5
p1,1 0 p1,2

3
p1,2

3
p1,2

3
p1,3

5
p1,3

5
p1,3

5
p1,3

5
p1,3

5p2,1
2

p2,1
2 0 p2,2

2
p2,2

2
p2,3

5
p2,3

5
p2,3

5
p2,3

5
p2,3

5p2,1
2

p2,1
2

p2,2
2 0 p2,2

2
p2,3

5
p2,3

5
p2,3

5
p2,3

5
p2,3

5p2,1
2

p2,1
2

p2,2
2

p2,2
2 0 p2,3

5
p2,3

5
p2,3

5
p2,3

5
p2,3

5p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3 0 p3,3

4
p3,3

4
p3,3

4
p3,3

4p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3

p3,3
4 0 p3,3

4
p3,3

4
p3,3

4p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3

p3,3
4

p3,3
4 0 p3,3

4
p3,3

4p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3

p3,3
4

p3,3
4

p3,3
4 0 p3,3

4p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3

p3,3
4

p3,3
4

p3,3
4

p3,3
4 0


Note the block structure, and that p must be a stochastic matrix.
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Equilibrium behavior of the inner chain

The block structure motivates us to define

αk = lim
n→∞

|Vk |
n and πk , lim

n→∞

∑
x∈Vk

Πx = lim
n→∞

|Vk |Π̄k for k = 1, . . . ,K .

Proposition
The quantity π solves πTp = πT, and is therefore the equilibrium distribution of a
Markov chain with transition matrix p and state space Ω = {1, . . . ,K}.

Example (K = 2 clusters)
After solving the balance equations that the limiting equilibrium behavior is given by
π1 = p21/(p12 + p21) and π2 = p12/(p12 + p21).
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Mixing time

Analyzing and bounding the mixing time of a BMC is crucial.

Without mixing within T time steps, we would not expect to be able to cluster.

We define d(t) , supx∈V
{
dTV(Pt

x ,·,Π)
}
and tmix(ε) , min{t ≥ 0 : d(t) ≤ ε}, where

dTV(µ, ν) , 1
2
∑
x∈V
|µx − νx |.

Proposition
There exists a strictly positive absolute constant cmix such that tmix(ε) ≤ −cmix ln ε, for
every Block Markov Chain (BMC) of finite size n ≥ K.

In other words, the mixing times are very short in light of our system size n.
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Part III

Our main results
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Main results

We obtain quantitative statements for

E ,
K⋃

k=1
V̂γopt(k)\Vk where γopt ∈ arg min

γ∈Perm(K)

∣∣∣ K⋃
k=1
V̂γ(k)\Vk

∣∣∣.
Here, the sets V̂1, . . . , V̂K will always denote an approximate cluster assignment
obtained from some clustering algorithm.

Remark
Throughout, we assume that K , α, p are fixed, and we study the asymptotic regime
n→∞. Our clustering procedure will assume that K is known, and α, p unknown.
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Information theoretical lower bound
Definition
For α ∈ ∆K−1 and p ∈ ∆∆(K−1)×K , let

I(α, p) , min
a 6=b

{ K∑
k=1

1
αa

(
πapa,k ln pa,k

pb,k
+ πkpk,a ln pk,aαb

pk,bαa

)
+
(πb
αb
− πa
αa

)}
.

Here π denotes the solution to πTp = πT.

Theorem
An algorithm is (ε, c)-locally good at (α, p) if it satisfies EP [|E|] ≤ ε for all BMC models
constructed from the given p and partitions satisfying ||Vk | −αkn| ≤ c for all k. Assume
that T = ω(n). Then there exists a strictly positive and finite constant C independent
of n such that: there exists no (ε, 1)-locally good clustering algorithm at (α, p) when

ε < Cn exp
(
− I(α, p)Tn

(
1 + o(1)

))
.

Clustering in Block Markov Chains Sanders, Proutière, Yun 14/44



Information theoretical lower bound
Definition
For α ∈ ∆K−1 and p ∈ ∆∆(K−1)×K , let

I(α, p) , min
a 6=b

{ K∑
k=1

1
αa

(
πapa,k ln pa,k

pb,k
+ πkpk,a ln pk,aαb

pk,bαa

)
+
(πb
αb
− πa
αa

)}
.

Here π denotes the solution to πTp = πT.

Theorem
An algorithm is (ε, c)-locally good at (α, p) if it satisfies EP [|E|] ≤ ε for all BMC models
constructed from the given p and partitions satisfying ||Vk | −αkn| ≤ c for all k. Assume
that T = ω(n). Then there exists a strictly positive and finite constant C independent
of n such that: there exists no (ε, 1)-locally good clustering algorithm at (α, p) when

ε < Cn exp
(
− I(α, p)Tn

(
1 + o(1)

))
.

Clustering in Block Markov Chains Sanders, Proutière, Yun 14/44



Asymptotically accurate / exact detection
Conditions for asymptotically accurate detection
In view of our lower bound,

EP
[ |E|
n
]
≥ C exp

(
− I(α, p)Tn

(
1 + o(1)

))
,

there may exist asymptotically accurate (ε, 1)-locally good algorithms at (α, p) only if
I(α, p) > 0 and T = ω(n).

Conditions for asymptotically exact detection
Similarly,

EP [|E|] ≥ C exp
(

ln n − I(α, p)Tn
(
1 + o(1)

))
,

so necessary conditions for the existence of an asymptotically exact (ε, 1)-locally good
algorithm at (α, p) are I(α, p) > 0 and T − n ln(n)

I(α,p) = ω(1). In particular, T must scale
atleast as n ln n.
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Information quantity I(α, p) for K = 2 clusters

These systems have three parameters: α2, p1,2, p2,1 ∈ (0, 1)

Question! Consider a BMC with α2 = 1
2 and p1,2 = 1− p2,1 6= 1

2 and p1,2 > p2,1
w.l.o.g. In this scenario, Px ,z = Py ,z for all x , y , z ∈ V , that is, every row of the kernel is
identical to any other row. Intuitively, do you expect that we are able to cluster?

Answer. In spite of the transition matrix’ rows all being identical, we can still cluster.
Here π2 > π1, and we could cluster based on the equilibrium distribution as T →∞.

More precisely,

I(α, p) = 0 if and only if α2 = p1,2 = 1− p2,1

Asymptotically accurate recovery thus seems possible as soon as T = ω(n), and
asymptotically exact recovery as soon as T = ω(n ln n).
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Clustering in the critical regime
There is a phase transition in the critical regime T = n ln n

0
0

1
1

p12

p
21

α2 = 1/4

0
0

1
1

p12
p
21

α2 = 1/2 Region where I(α, p) < 1.

Figure: (left, middle) The parameters (p1,2, p2,1) in blue for which asymptotic exact recovery
should be possible in the critical regime T = n ln n for K = 2 clusters. (right) The parameters
(α2, p1,2, p2,1) for which asymptotic exact recovery is likely not possible, i.e., I(α, p) < 1.
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Procedure for cluster recovery

We have now established necessary conditions for asymptotically accurate and exact
recovery, and identified performance limits satisfied by any (ε, 1)-locally good
clustering algorithms at (α, p).

Next, we devised an (ε, 1)-locally good clustering procedure at (α, p) that reaches
these limits order-wise. Our procedure takes as input X0,X1, . . . ,XT , calculates

N̂x ,y ,
T−1∑
t=0

1[Xt = x ,Xt+1 = y ] for x , y ∈ V,

and then proceeds in two steps called:
• the Spectral Clustering Algorithm (SCA), and
• the Cluster Improvement Algorithm (CIA)
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Spectral Clustering Algorithm (SCA)

Input: n,K , and a trajectory X0,X1, . . . ,XT
Output: An approximate cluster assignment V̂ [0]

1 , . . . , V̂ [0]
K , and matrix N̂

1 begin
2 for x ← 1 to n do
3 for y ← 1 to n do
4 N̂x,y ←

∑T−1
t=0 1[Xt = x ,Xt+1 = y ];

5 end
6 end
7 Calculate the trimmed matrices N̂Γ;
8 Calculate the Singular Value Decomposition (SVD) UΣVT of N̂Γ;
9 Order U,Σ,V s.t. the singular values σ1 ≥ σ ≥ . . . ≥ σn ≥ 0 are in descending order;

10 Construct the rank-K approximation R̂ =
∑K

k=1 σkU·,kV·,k T;
11 Apply a K -means algorithm to [R̂, R̂>] to determine V̂ [0]

1 , . . . , V̂ [0]
K ;

12 end
Algorithm 1: Pseudo-code for the Spectral Clustering Algorithm.
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Performance of the SCA

Theorem
Assume that T = ω(n) and I(α, p) > 0. Then the proportion of misclassified states
after the Spectral Clustering Algorithm satisfies:

|E|
n = OP

( n
T ln T

n
)

= oP(1).

Thus the SCA achieves asymptotically accurate detection whenever this is possible.

Question! But there’s a huge problem. What does the SCA fail at?

Answer. The bound fails to guarantee asymptotic exact recovery, even in the case
T = ω(n ln(n)). We cannot guarantee that its recovery rate approaches Theorem 5’s
fundamental limit!
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Cluster Improvement Algorithm (CIA)
Input: An approximate assignment V̂ [t]

1 , . . . , V̂
[t]
K , and matrix N̂

Output: A revised assignment V̂ [t+1]
1 , . . . , V̂ [t+1]

K
1 begin
2 n← dim(N̂), V ← {1, . . . , n}, T ←

∑
x∈V

∑
y∈V N̂x,y ;

3 for a← 1 to K do
4 π̂a ← N̂V̂ [t]

a ,V
/T , α̂a ← |V̂ [t]

a |/n, V̂ [t+1]
a ← ∅;

5 for b ← 1 to K do
6 p̂a,b ← N̂V̂ [t]

a ,V̂
[t]
b
/N̂V̂ [t]

a ,V
;

7 end
8 end
9 for x ← 1 to n do
10 copt

x ← arg maxc=1,...,K

{∑K
k=1

(
N̂x,V̂ [t]

k
ln p̂c,k + N̂V̂ [t]

k ,x
ln p̂k,c

α̂c

)
− T

n ·
π̂c
α̂c

}
;

11 V̂ [t+1]
copt

x
← V̂ [t+1]

copt
x
∪ {x};

12 end
13 end

Algorithm 2: Pseudo-code for the Cluster Improvement Algorithm.
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Performance of the CIA

Theorem
Assume that T = ω(n) and I(α, p) > 0. Then for any t ≥ 1, after t iterations of the
Clustering Improvement Algorithm, initially applied to the output of the Spectral
Clustering Algorithm, we have:

|E [t]|
n = OP

(
e−t
(

ln T
n −ln ln T

n

)
+ e
−

α2
min

720η3α2
max

T
n I(α,p))

.

Observe that for t = ln(n), the number of misclassified vertices after t applications of
the CIA is at most of the order ne−C T

n I(α,p). Up to the constant C , α2
min/(720η3α2

max),
this corresponds to Theorem 5’s fundamental recovery rate limit.

Plus, we have asymptotically exact detection when T = ω(n ln n) and I(α, p) > 0!
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Let’s start with an example – The observation and truth
Consider n = 300 states grouped into three clusters of respective relative sizes
α = (0.15, 0.35, 0.5). The transition rates between these clusters are defined by:
p =

(
0.9200, 0.0450, 0.0350; 0.0125, 0.8975, 0.0900; 0.0175, 0.0200, 0.9625

)
.

(a) N̂, unsorted (b) N̂, sorted (c) P, sorted
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Let’s start with an example – The procedure’s 99.7% recovery

(a) Initial clustering. (b) Final clustering.
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Performance sensitivity of the SCA
Here α = (0.15, 0.35, 0.5), and p =

(
0.50, 0.20, 0.30; 0.10, 0.70, 0.20; 0.35, 0.05, 0.60

)
.

Now I(α, p) ≈ 0.88 > 0, so lower than before, meaning that clustering is more difficult.
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(a) T = n ln n
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Figure: The error rate of the Spectral Clustering Algorithm (without trimming) as function of n,
for different scalings of T . Every point is the average result of 40 simulations, and the bars
indicate a 95%-confidence interval.
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Performance sensitivity of the CIA

Here α = (1/3, 1/3, 1/3), and p =
(
0.1, 0.4, 0.5; 0.7, 0.1, 0.2; 0.6, 0.3, 0.1

)
.

Different from before, the clusters are now of equal size and the off-diagonal entries of
p are dominant. Here, I(α, p) ≈ 0.27 > 0, so clustering is again more challenging.
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The error after applying the
SCA (0), and the CIA (1, 2)
twice, as function of T .

At T = 30000, the CIA
achieved 100% accurate
detection after 2 iterations in
all 200 instances.
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Our procedure in the critical regime
Consider K = 2, α2 = 1

2 , and T = n ln n. Pascal Lagerweij (a MSc student) helped us
numerically evaluate F̂1(ε) =

{
(p1,2, p2,1) ∈ (0, 1)2

∣∣∣EP
[
|E [t]|

n

]
≥ 1− ε

}
.

After the SCA. After the CIA. F̂1(ε = 0.027)

Figure: The average proportion of well-classified states for each rasterpoint (p1,2, p2,1) ∈ (0, 1)2,
and numerical feasibility region of our clustering procedure (right), all in the critical regime
T = n ln n. The green line outlines the theoretical region I(α, p) ≤ 1 within which no algorithm
exists able to asymptotically recover the clusters exactly.
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Part IV

In conclusion
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Let us summarize

Our paper “Clustering in Block Markov Chains”:

• introduces BMCs, a new interesting model;

• provides an information-theoretical lower bound for the detection error, tight
conditions for asymptotically accurate detection and an almost tight condition for
exact recovery;

• proposes an algorithm that almost reaches our information-theoretical lower bound;

• develops a new spectrum concentration bound for random matrices with dependent
entries.

A preprint “Clustering in Block Markov Chains” is available on
https://arxiv.org/abs/1712.09232.
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Part V

Appendix: Our proofs
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The information bound
Theorem
If T = ω(n) and I(α, p) > 0, then there exists a strictly positive and finite constant C independent of n
such that: for any clustering algorithm

EP [|E|] ≥ C exp
(

ln n − J(α, p)Tn + o
(T
n

))
,

where

0 < J(α, p) , min
k 6=l

min
q∈Q(k,l)

(
αk

αk + αl
Ik (q||p) + αl

αk + αl
Il (q||p)

)
≤ I(α, p).

Here

Ic (q||p) ,
K∑

k=1

(( K∑
l=1

πlql,0
)
q0,k ln q0,k

pc,k
+ πkqk,0 ln qk,0αc

pk,c

)
+
(
πc

αc
−

K∑
k=1

πkqk,0

)
for c = 1, . . . ,K, and

Q(k, l) ,
{
q ∈ Q

∣∣Ik (q||p) = Il (q||p)
}
6= ∅ for all k 6= l ,

Q ,
{

(qk,0, q0,k )k=0,...,K ∈ (0,∞)
∣∣q0,0 = 0,

K∑
l=1

q0,l = 1
}
.
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Our change of measure

In the proof, we suppose that the path X0, . . . ,XT is generated by a perturbed
stochastic model Ψ, rather than the true model Φ.

Specifically, we randomly choose a vertex V ∗ ∈ V and place it in its own cluster with its
own distinct transition rates. I.e., given V ∗, we construct an alternative kernel Q.

Given X0,X1, . . . ,XT ∈ V, the argument then revolves around the log-likelihood ratio

L , ln PQ[X0,X1, . . . ,XT ]
PP [X0,X1, . . . ,XT ] =

T∑
t=1

ln
(QXt−1,Xt

PXt−1,Xt

)
.

Here, PP [X0,X1, . . . ,XT ] =
∏T

t=1 PXt−1,Xt . Note that L is a random variable.

Intuitively, L measures how likely the path X0, . . . ,XT is under Q as opposed to P.
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The perturbed BMC

Q =
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An intermediate information bound

Using state symmetry, the change of measure’s form, and Chebyshev’s inequality:

Proposition
Assume that V ∗ is chosen uniformly at random from two different clusters Va and Vb,
that Q is constructed from q ∈ Q(a, b), and that there exists a (ε, 1)-locally good
clustering algorithm at (α, p). Then:
(i) There exists a constant δ > 0 independent of n s.t. PΨ[V ∗ ∈ E ] ≥ δ > 0.
(ii) There exists a constant C > 0 independent of n such that

EΦ[|E|] ≥ Cn exp
(
−EΨ[L]−

√
2
δ

√
VarΨ[L]

)
.
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Leading order behavior of EQ[L|σ(V ∗)] and VarQ[L|σ(V ∗)]

Proposition (Leading order behavior of the expectation)
For given V ∗ ∈ V and q ∈ Q, if T = ω(1), then

EQ[L|σ(V ∗)] = T
n Iσ(V ∗)(q||p) + o

(T
n
)
.

Proposition (Variance is negligible due to mixing)
For given V ∗ ∈ V and q ∈ Q, if T = ω(n), then

VarQ[L|σ(V ∗)] = o(T 2/n2).

The crux is to relate the covariances between the T steps of the sample path
X1,X2, . . . ,XT to the mixing time of the underlying Markov chain.
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Lemma (Appropriateness)
For any two clusters a 6= b ∃ at least one finite point q̄ ∈ Q s.t. Ia(q̄||p) = Ib(q̄||p).

Lemma (Deconditioning)
If T = ω(n), then for any two clusters a 6= b, there exists an absolute c > 0 s.t.

EP [|E|]
n ≥ c exp

(
−T

n Ia,b(q̄||p) + o
(T
n
))
.

Here, Ia,b(q̄||p) = αa
αa+αb

Ia(q̄||p) + αb
αa+αb

Ib(q̄||p) for any point q̄ ∈ Q(a, b).

Clustering in Block Markov Chains Sanders, Proutière, Yun 36/44



Bound optimization

You finally optimize the bound: build the change of measure using the parameters

(kopt, lopt, qopt) ∈ arg min
k 6=l

min
q∈Q(k,l)

{ αk
αk + αl

Ik(q||p) + αl
αk + αl

Il (q||p)
}
.

By construction EΨ[L] = (T/n)J(α, p) + o(T/n), and 0 < J(α, p) <∞.

Lemma (Relation between J(α, p) and I(α, p))
For any BMC, J(α, p) ≤ I(α, p). Furthermore, I(α, p) = 0 if and only if there exists
i 6= j such that pi ,c = pj,c and pc,i/αi = pc,j/αj for all c ∈ {1, . . . ,K}.

This completes the proof.
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Performance of the Spectral Clustering Algorithm

Step 1. We show that N0 satisfies a separability property: i.e., if two states x , y ∈ V do not
belong to the same cluster, the l2-distance between their respective rows N0

x ,·, N0
y ,·

is at least Ω(
√
T 2DN(α, p)/n3).

Step 2. We upper bound the error ‖R̂0 − N0‖F using ‖N̂Γ − N‖.

Step 3. We prove that R̂ also satisfies the separability property if (n/T )‖N̂Γ − N‖ → 0, as
suggested by Step 1 and Step 2.

Step 4. Because of R̂0’s separability property, we must conclude that the number of
misclassified states satisfies Theorem 6. Otherwise the separability property of Step
3 would contradict with Step 2.

Proposition (Spectral concentration of a noise matrix with dependent entries)
For any BMC, ‖N̂Γ − N‖ = OP

(√
T
n ln T

n

)
.
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Steps 1, 2, and 3

Lemma (Separability property)
For any x , y ∈ V for which σ(x) 6= σ(y), ‖N0

x ,· − N0
y ,·‖2 = Ω

(√
T 2DN (α,p)

n3

)
.

Lemma (Centered R̂ ’s Frobenius norm and N̂ ’s spectral norm)
‖R̂0 − N0‖F ≤

√
16K‖N̂Γ − N‖.

Lemma (Inheritance of separability)
If ‖N̂Γ − N‖ = oP(f (n,T )) for some f (n,T ) = o(T/n) and h(n,T ) is s.t.
ω
(
(f (n,T ))2/n

)
=
(
h(n,T )

)2 = o(T 2DN(α, p)/n3), then

‖R̂0
x ,· − N0

x ,·‖2 = ΩP
(√T 2DN(α, p)

n3

)
for any misclassified vertex x ∈ E .
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Step 4: Contradiction argument

The final step is almost immediate. Gathering Steps 1 – 3, we have:

ΩP
(
|E|T

2DN(α, p)
n3

) (i)= ‖R̂0 − N0‖2F
(ii)
≤ 16K‖N̂Γ − N‖2 (iii)= OP

(T
n ln T

n
)
,

where (i) stems from Lemma 15 (the terms ‖R̂0
x ,·−N0

x ,·‖22 for x ∈ V \ E can be added to
form the Frobenius norm), (ii) comes from Lemma 14, and (iii) is from Proposition 6.

We deduce that |E|/n = OP((n/T ) ln (T/n)). This concludes the proof.

Lemma
Let ∪∞n=1{Xn}n≥0, ∪∞n=1{Yn} denote two families of random variables with the properties that
P[Xn ≤ Yn] = 1, Xn = ΩP(xn), and Yn = OP(yn), where {xn}∞n=1, {yn}∞n=1 denote two deterministic
sequences with xn, yn ∈ R. Then, xn = O(yn).
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Performance of the Cluster Improvement Algorithm
Define E [t]

H = E [t] ∩H, where H is the largest set of states x ∈ Γ that satisfy:
(H1) When x ∈ Vi , for all j 6= i ,

K∑
k=1

(
N̂x ,Vk ln pi ,k

pj,k
+ N̂Vk ,x ln pk,iαj

pk,jαi

)
+
( N̂Vj ,V

αjn
− N̂Vi ,V

αin
)
≥ T

2n I(α, p).

(H2) N̂x ,V\H + N̂V\H,x ≤ 2 ln ((T/n)2).

Summing over all misclassified states that in E [t+1]
H , we obtain

E ,
∑

x∈E [t+1]
H

(
u[t]

x (σ[t+1](x))− u[t]
x (σ(x))

)
≥ 0.

Step 1. Concentration implies that E ≈ −(T/n)I(α, p)|E [t+1]
H |+ ‖N̂Γ − N‖

√
|E [t+1]
H ||E [t]

H |.
Step 2. For large n,T , Step 1 + suboptimality E ≥ 0 yields an iterative bound.
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Improvement per iteration

Theorem
If I(α, p) > 0 and T = ω(n), and |E [t]

H | = OP(e[t]
n ) for some 0 < e[t]

n = o(n), then

|E [t+1]
H | �P e[t+1]

n = O
(
e[t]

n

( n
T f (n,T )

)2)
= o(e[t]

n ).

Furthermore, there exists a strictly positive absolute constant C such that

|E [t]
Hc | ≤ |Hc| = OP

(
n exp

(
−C T

n I(α, p)
)

+ n exp
(
−T

n ln T
n
))

for all t ∈ N0.

Here, f (n,T ) =
√

(T/n) ln (T/n).
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Step 1: Concentration arguments
Substitute u[t]

x ’s definition to obtain after simplifying

E =
∑

x∈E [t+1]
H

[ K∑
k=1

(
N̂x ,V̂ [t]

k
ln

p̂σ[t+1](x),k
p̂σ(x),k

+N̂V̂ [t]
k ,x ln

p̂k,σ[t+1](x)
p̂k,σ(x)

)
+
( N̂V̂ [t]

σ(x),V

|V̂ [t]
σ(x)|

−
N̂V̂ [t]

σ[t+1](x)
,V

|V̂ [t]
σ[t+1](x)|

)]
.

Split it into E1,E2 centered around diff. objects that concentrate and U the remainder.

E.g. Define E1 = Eout
1 + E in

1 + E cross
1 with

Eout
1 =

∑
x∈E [t+1]

H

K∑
k=1

N̂x,Vk ln
pσ[t+1](x),k

pσ(x),k
, E in

1 =
∑

x∈E [t+1]
H

K∑
k=1

N̂Vk ,x ln
pk,σ[t+1](x)

pk,σ(x)
,

E cross
1 =

∑
x∈E [t+1]

H

( N̂Vσ(x),V

|Vσ(x)|
−

N̂V
σ[t+1](x)

,V

|Vσ[t+1](x)|

)
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Step 2: Exploiting suboptimality through a contradiction
Analyzing each term, you will find that:

Lemma
If T = ω(n), |E [t]

H | = OP(e[t]
n ), and |E [t+1]

H | �P e[t+1]
n , then

−E1 = ΩP
(
I(α, p)Tn e[t+1]

n

)
, |U| = OP

(√T
n
(

ln T
n
)
e[t+1]

n

)
, and

|E2| = OP
(T
n
e[t]

n
n e[t+1]

n + f (n,T )
√
e[t]

n e[t+1]
n +

(
ln T

n
)
e[t+1]

n

)
.

Suboptimality now implies that −E1 ≤ |E2|+ |U| almost surely. Consequentially,

I(α, p)e[t+1]
n = O

( n
T f (n,T )

√
e[t]

n e[t+1]
n

)
.

Rearranging when e[t+1]
n > 0 completes the proof.
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