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Almost Sure Convergence of Dropout Algorithms for Neural Networks

Albert Senen–Cerda 1 Jaron Sanders 1

Abstract

We investigate the convergence and conver-

gence rate of stochastic training algorithms

for Neural Networks (NNs) that, over the years,

have spawned from Dropout (Hinton et al.,

2012). Modeling that neurons in the brain

may not fire, dropout algorithms consist in

practice of multiplying the weight matrices

of a NN component-wise by independently

drawn random matrices with {0, 1}-valued en-

tries during each iteration of the Feedforward–

Backpropagation algorithm. This paper presents

a probability theoretical proof that for any

NN topology and differentiable polynomially

bounded activation functions, if we project the

NN’s weights into a compact set and use a

dropout algorithm, then the weights converge to

a unique stationary set of a projected system

of Ordinary Differential Equations (ODEs). We

also establish an upper bound on the rate of con-

vergence of Gradient Descent (GD) on the lim-

iting ODEs of dropout algorithms for arbores-

cences (a class of trees) of arbitrary depth and

with linear activation functions.

1. Introduction

Machine learning and especially NNs have found ample

use in present-day big data applications. Even though

the models as well as the training algorithms for NNs

have been known since the 1980s, a full mathematical

understanding is missing. Key questions include the sur-

prising success of Stochastic Gradient Descent (SGD) at

finding good local minima on a nonconvex risk func-

tion (Bhojanapalli et al., 2016), and why overparameter-

ized NNs perform well in spite of the concern of overfitting

(Gunasekar et al., 2017).

Several stochastic training algorithms for NNs to avoid
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overfitting have spawned from the introduction of

Dropout (Hinton et al., 2012). Modeling how neurons

in the brain may not fire, dropout algorithms consist

in practice of multiplying weight matrices of the NN

component-wise by independently drawn random matri-

ces with {0, 1}-valued entries in each iteration of the

Feedforward–Backpropagation (FB) algorithm. The ele-

ments of these random masking matrices indicate whether

each individual weight is (0), or is not masked (1) during

a training step, see also Figure 1. Mathematically, this

turns the FB algorithm into a step of a SGD algorithm in

which the primary source of randomness is the stochas-

tic NN’s configuration. Under mild independence assump-

tions, dropout algorithms can be understood to minimize a

risk function averaged over all possible NN configurations,

see e.g. (Baldi & Sadowski, 2013). These stochastic train-

ing algorithms are thus forms of ensemble training, and

intuitively, this explains why there is regularization when

using them.

Dropout algorithms are interesting because they lie on the

intersection of percolation theory and stochastic optimiza-

tion. Percolation theory studies the properties of connected

components in random graphs, with the canonical example

being bond percolation (Broadbent & Hammersley, 1957).

The two-dimensional bond percolation problem is as fol-

lows: consider a lattice of L × L vertices, randomly re-

move some of the edges, and ask what is the probability

that there exists a path from e.g. left to right. Dropout al-

gorithms’ connections to bond percolation become imme-

diately clear when we consider that for an iteration of a

dropout algorithm to contribute a potentially useful step to-

wards a minimum of its risk function, there must be a path

from input to output in the NN after having applied the ran-

dom masks. Knowing of the connection to bond percola-

tion, for the same number of iterations, one may therefore

at first glance expect that dropout performs worse than a

routine implementation of the FB algorithm, but in fact,

dropout algorithms usually perform well due to their reg-

ularization properties (Hinton et al., 2012; Srivastava et al.,

2014). From the point of view of bond percolation, how-

ever, this should still come at the cost of convergence rates

of dropout algorithms. The convergence rate should de-

pend on the configuration of the NN and the dropout al-

gorithm’s mask variables. Exactly how this dependence is

http://arxiv.org/abs/2002.02247v1
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Figure 1. Dropconnect’s training step (Wan et al., 2013) in a L = 4 NN. In this algorithm, every time a sample is provided to a NN, a

random NN is first generated by flipping a biased coin for each edge that shows head with probability p ∈ (0, 1]. The output of this

random NN is then used to update all weights using the FB algorithm. This effectively implements a SGD on random NNs.

is unclear, and in fact bounds for specific convergence rates

of dropout algorithms are unknown. For a full, comprehen-

sive study of the convergence rates of dropout algorithms,

one needs to combine percolation theory with stochastic

optimization, and this leads to a challenging analysis.

This paper presents a first convergence analysis of dropout

through two results. Our first result is a formal probability

theoretical proof that for any (fully connected) NN topol-

ogy and with differentiable polynomially bounded activa-

tion functions, if we project a dropout algorithm’s weights

onto a compact convex set, then the weights converge to a

unique stationary set of a projected system of ODEs. This

result gives us the formal guarantee that the dropout algo-

rithm is well-behaved for a wide range of NNs and acti-

vation functions, and will at least asymptotically (mean-

ing after sufficiently many iterations) not suffer from prob-

lems of percolative nature. Pragmatically the projection as-

sumption is furthermore mild and is used since the com-

pact set can be chosen arbitrarily and thus as large as one

would like, and the truncation of large variables in com-

puter algorithms is common especially in light of mem-

ory constraints. It must be noted, however, that the pro-

jection assumption may induce artificial stationary points

on the boundary of the compact set, although we expect

convergence to such points to be unlikely if the compact

set is chosen sufficiently large. Identifying the probability

with which projected dropout converges to such an artifi-

cial stationary point by generalizing techniques from e.g.

(Dupuis & Kushner, 1985; 1989; Buche & Kushner, 2002),

would be interesting future work.

While general, our first result lacks specificity: for exam-

ple, it only characterizes the limit points implicitly, and it

does not establish the rate of convergence of dropout. Our

second result does establish bounds on convergence rates,

but consequentially rely on stronger structural assumptions.

Studying more restrictive NN configurations such as lines

(Shamir, 2018), and full linear L-layer NNs (Arora et al.,

2018) is however common within the scientific literature

on the convergence of GD in NNs. Even without a dropout

algorithm this analysis is already a substantial theoretical

challenge since the optimization landscape is highly non-

convex. The convergence rates of SGD are not fully un-

derstood for many NNs. Concretely, our second result is

an explicit upper bound on the rates of convergence of reg-

ular GD on the limiting ODEs of dropout algorithms for

arborescences (a class of trees), of arbitrary depth with lin-

ear activation functions. While GD on a limiting ODE is

not exactly a dropout algorithm—it is deterministic and

not stochastic—analyzing its convergence rate is a major

and necessary step towards analyzing the convergence rate

of dropout algorithms. This result furthermore does not

rely on a projection assumption, and the global minimizer

can be explicitly characterized. Such explicit characteri-

zation of global minima is generally nontrivial when us-

ing dropout algorithms due to their regularization effects

(Mianjy et al., 2018; Mianjy & Arora, 2019). The reasons

we restrict to arborescences for now is that these (i) are

subject to bond percolation, note for example that in a line

configuration the probability of there being a path from in-

put to output is exponentially small in the number of layers

and this will negatively impact the convergence rate; and

(ii) we can explicitly tie the upper bound for the conver-

gence rate to structural properties of the arborescence such

as depth and number of paths. Besides giving insight into

how NNs are trained when using dropout algorithm, our re-

sults hint at what a NN configuration should look like in

order to improve convergence rates for dropout algorithms.

1.1. Literature overview

The first description of a dropout algorithm was in

(Hinton et al., 2012). Diverse variants of the algorithm

have appeared since, including versions in which edges are
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dropped (Wan et al., 2013), groups of edges are dropped

from the input layer (DeVries & Taylor, 2017), the re-

moval probabilities change adaptively (Ba & Frey, 2013;

Li et al., 2016); and that are suitable for recurrent NNs

(Zaremba et al., 2014; Semeniuta et al., 2016). The per-

formance of the original algorithm has been investigated

on datasets (Hinton et al., 2012; Srivastava et al., 2014),

and dropout algorithms have found application in e.g. im-

age classification (Krizhevsky et al., 2012), handwriting

recognition (Pham et al., 2014), heart sound classification

(Kay & Agarwal, 2016), and drug discovery in cancer re-

search (Urban et al., 2018).

Theoretical studies of dropout algorithms have focused

on their regularization effect. The effect was first noted

in (Hinton et al., 2012; Srivastava et al., 2014), and sub-

sequently investigated more in-depth for both linear NNs

as well as nonlinear NNs in (Baldi & Sadowski, 2013;

Wager et al., 2013; Baldi & Sadowski, 2014). Within the

context of matrix factorization, it was then shown that

dropout’s regularization induces an equivalent determinis-

tic optimization problem with regularization on the factors

(Cavazza et al., 2017a;b). Characterizations of dropout’s

risk function and dropout’s regularizer for (usually linear)

NNs can be found in (Mianjy et al., 2018; Mianjy & Arora,

2019; Pal et al., 2019). There exists however no prior work

on whether dropout algorithm as stochastic training algo-

rithms are well-behaved and converge, nor on the impact

of the NNs configuration on a dropout algorithm’s rate of

convergence. It is noteworthy that these questions have

been studied within the context of NNs being trained with-

out dropout algorithms, see for instance (Arora et al., 2018;

Shamir, 2018; Zou et al., 2018).

Dropout can, by construction, be understood as a form

of SGD. More generally, dropout algorithms are all

stochastic approximation algorithms. The basic stochas-

tic approximations algorithms were first introduced in

(Robbins & Monro, 1951; Kiefer et al., 1952), and have

been subject to enormous literature due to their ubiquity.

For overviews, we refer to (Kushner & Yin, 2003; Borkar,

2009); we rely on the former to prove our first result.

Overview. Section 1 contains our introduction and gives

an overview of the related literature on dropout algorithms

and some previous convergence results on NNs. In Sec-

tion 2, we lay out notation, recall the FB algorithm for the

reader, and describe the class of dropout algorithms that we

study. Sections 3, 4 contain our main results, proof outlines,

and discussions thereof. Finally, we conclude in Section 5

with also ideas for future work. The supplementary mate-

rial contains the details of our proofs.

Notation. Deterministic sequences are indexed with curly

brackets in this paper: α{1}, α{2}, · · · . This is to distin-

guish from sequences of random variables, which are in-

dexed using square brackets, e.g. X [1], X [2], · · · .
Deterministic vectors are written lower case x ∈ R

d, but an

exception is made for random variables (which are always

capitalized). Matrices are also always capitalized. For a

function σ : R → R and a matrix A ∈ R
a×b, a, b ≥ 1,

we denote σ(A) the matrix with σ applied entry-wise to

A. The entries of any tensor will be referred to using sub-

scripts, e.g. xi, Ai,j , or Ti,j,l. For any vector x ∈ R
d,

the ℓ2-norm is defined as ‖x‖2 , (
∑d

i=1 |xi|2)1/2. For

any matrix A ∈ R
a×b, the Frobenius norm is defined as

‖A‖F , (
∑a

i=1

∑b
j=1 |Ai,j |2)1/2. For two matrices A,B,

the Hadamard (entrywise) product is denoted by A⊙B.

Let N+ be the strictly positive integers and N0 , N+∪{0}.

For l ∈ N+, we denote [l] = {1, . . . , l}. For a function

f ∈ C2(Rn), we denote the gradient and Hessian of f with

respect to the Euclidean norm ‖·‖2 in R
n, by ∇f and ∇2f

respectively.

2. Model

2.1. Neural Networks (NNs), and their structure

Let L denote the number of layers in the NN, and let

dl ∈ N+ denote the output dimension of layer l = 1, . . . , L.

Let Wl+1 ∈ R
dl+1×dl denote the matrices of weights in be-

tween layers l and l+1 for l = 0, 1, . . . , L−1. DenoteW =
(WL, . . . ,W1) ∈ W , with W , R

dL×dL−1 ×· · ·×R
d1×d0

the set of weights.

Definition 1. Let σ be an activation function σ : R → R.

A Neural Network (NN) with L layers is given by the class

of functions ΨW : Rd0 → R
dL defined iteratively by

A0 = x,

Ai+1 = σ(WiAi−1) ∀i ∈ {1, . . . , L− 2},
ΨW (x) = WLAL−1 = AL. (1)

Canonical activation functions include the linear func-

tion σ(t) = t, the Rectified Linear Unit (ReLU) function

σ(t) = max{0, t}, and the sigmoid function σ(t) =
1/(1 + e−t). In this paper, we restrict to the case that σ
belongs to a class of polynomially bounded differentiable

functions.

Definition 2. The set of polynomially bounded maps with

continuous derivatives up to order r ∈ N0 is given by

Cr
PB(R) =

{

σ ∈ Cr(R)
∣

∣∀l = 0, . . . , r∃kl > 0 : (2)

sup
x∈R

|σ(l)(x)(1 + x2)−kl | < ∞
}

.

Note that the linear activation function, as well as the

sigmoid activation function, both belong to Cr
PB(R) for

any r ∈ N0. Also, any polynomial activation function

P (x) ∈ R[x] belongs to C
deg(P )
PB (R). However, the ReLU

activation function is not in Cr
PB(R) for any r ∈ N0.
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2.2. Feedforward–Backpropagation, and SGD

Let (X,Y ) : Ω → R
d0 × R

dL be a random variable on

the probability space (Ω,F ,P) which follows a distribution

µ. A NN is typically used to predict output Y given input

X . So ideally, the NN is operated using weights in the set

argminW U(W ) where

U(W ) ,

∫

l(ΨW (x), y) dP[(X,Y ) = (x, y)] (3)

is called the risk function, and l : RdL → [0,∞) is a con-

vex loss function of one’s choice. Throughout this article,

we will specify the Euclidean ℓ2-norm l(x, y) , ‖x− y‖22
as our loss function of interest. In this paper, we make no

distinction between an oracle risk function or empirical risk

function. Both situations are covered by (3), which can be

seen by choosing the distribution appropriately. What we

theoretically do assume is that one has the ability to repeat-

edly draw independent and identically distributed samples

from µ. Hence, the results include the empirical risk case

(where µ has finite support) as well as the online learning

case as particular cases.

In an attempt to find a critical point in the set

argminW U(W ), the Feedforward–Backpropagation (FB)

algorithm is commonly used in NN training. It is a re-

cursive stochastic algorithm and works as follows. Let

{(Y [t], X [t])}t∈N+ be a sequence of independent copies of

(X,Y ), let W [0] ∈ W be an arbitrary nonrandom initial-

ization of the weights. For i = 1, . . . , L, r = 1, . . . , di+1,

l = 1, . . . , di, FB is used iteratively by updating

W
[t+1]
i,r,l = W

[t]
i,r,l − α{t+1}

(

FBW [t](X [t+1], Y [t+1])
)

i,r,l

(4)

for t = 0, 1, 2, etc. Here {α{t}}t∈N+ denotes a positive, so

α{t} ≥ 0 ∀t ∈ N+, deterministic step size sequence, and

the FB step of the algorithm is as follows:

Definition 3. Assume σ ∈ C1(R). Given weights W ∈ W
and input–output pair (x, y) ∈ R

d0 × R
dL , the tensor

FBW (x, y) ∈ R
dL×dL−1 × · · · ×R

d1×d0 is calculated iter-

atively by:

1. Computing A1, . . . , AL using Definition 1.

2. Calculating for i = L− 1, . . . , 1,

RL = AL = (y −WLAL−1) ∈ R
dL ,

Ri = (WT
i+1Ri+1)⊙ (σ′(WiAi−1)) ∈ R

di . (5)

3. Setting for i ∈ [L],
(

FBW (x, y)
)

i
= −2RiA

T
i−1.

The algorithm in (4) is a step in a SGD algorithm. To see

this, note that since σ ∈ C1(R) by assumption,

(

FBW (x, y)
)

i,r,l
=

∂l(ΨW (x), y)

∂Wi,r,l
(6)

holds. By substituting (6) into (4), one identifies the

SGD algorithm. Under additional assumptions on the dis-

tribution of (X,Y ) and by linearity of the expectation

and gradient operators, one can then furthermore see that

E[
(

FBW (X,Y )
)

i,r,l
] = ∂U(W )/∂Wi,r,l = (∇U)i,r,l,

which suggests that W [t] may converge to the crtical set

{W |∇U(W ) = 0}. Because (3) is not convex, there is no

guarantee that the iterates W [t] in (4) converge to a point

in argminW U(W ). Nonetheless, the surprising success

of (4) in NNs is still a key question in the field of machine

learning; as a starting point an interested reader may look

at e.g. (Gunasekar et al., 2017). Lastly, note that Defini-

tion 3 is a computationally efficient manner of calculating

∇l(ΨW (x), y). It is essentially a recursive computation

of the partial derivatives which leverages the NN’s layered

structure together with the chain rule of differentation.

2.3. Dropout algorithms, and their risk functions

Dropout algorithms are stochastic training algorithms to

avoid overfitting in NNs. These algorithms work by apply-

ing {0, 1}-valued random matrices as masks in the weights

during the FB step. More precisely, we examine the fol-

lowing class of dropout algorithms. Let (F,X, Y ) : Ω →
{0, 1}dL×dL−1 × . . .× {0, 1}d1×d0 ×R

d0 × R
dL be a ran-

dom variable on the probability space (Ω,F ,P). Here, we

write F = (FL, . . . , F1) and Fi+1 ∈ {0, 1}di+1×di for

i = 0, . . . , L−1, similar to how we notate weight matrices.

Let {(F [t], X [t], Y [t])}t∈N+ be a sequence of independent

copies of (F,X, Y ). In tensor notation, the weights are up-

dated iteratively by setting

W [t+1] = W [t] − α{t+1}∆[t+1] (7)

for t = 0, 1, 2, etc, where the random direction

∆[t+1] , F [t+1] ⊙ FBF [t+1]⊙W [t](X [t+1], Y [t+1]). (8)

Note in particular that if F
[t+1]
i,r,l = 0 for some i, r, l, then

∆
[t]
i,r,l = 0. In other words, masked variables are not up-

dated with these dropout algorithms.

The update rule (7) together with (8) describes differ-

ent variants of dropout algorithms. In canonical Dropout

(Hinton et al., 2012), for example, Fi,r,l′ = Fi,r,l ∼
Bernoulli(p) for any l, l′ ∈ [di] with p = 1/2. In Drop-

connect (Wan et al., 2013), Fi,r,l ∼ Bernoulli(p) for all

i, r, l with p = 1/2. In Cutout (DeVries & Taylor, 2017),

F1,r,l = 0 whenever |r − S1| < c, c ∈ N+ and |l − S2| <
c with (S1, S2) ∼ Uniform([d1]×[d0]). In fact, the class of

dropout algorithms we consider is quite broad. For exam-

ple, F [t] need not be independent of (X [t], Y [t]), nor does

F
[t]
i need to have the same distribution as F

[t]
j for i 6= j.
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We call

D(W ) ,

∫

l(Ψf⊙W (x), y) dP[(F,X, Y ) = (f, x, y)]

(9)

the dropout algorithm’s risk function. If F [t] is independent

of (X [t], Y [t]) for each t ∈ N0, and Ω is countable, then the

dropout algorithm’s risk function simplifies to D(W ) =
∑

f P[F = f ]
∑

x,y l(Ψf⊙W (x), y)P[(X,Y ) = (x, y)],
where the sums are over all possible outcomes of the ran-

dom variables F and (X,Y ), respectively.

3. Almost sure convergence of projected

dropout algorithms

Our first result pertains to projected dropout algorithms.

Let H ⊆ W be a convex compact nonempty set and let

PH : W → H be the projection onto H. By compactness

and convexity of H, the projection is unique. In a projected

dropout algorithm, the weight update in (7) is replaced by

W
[t+1]
i = PH(W

[t]
i − α[t+1]∆

[t+1]
i ) for t ∈ N0. (10)

We assume that H is defined by smooth constraints H =
{W ∈ W | qi(W ) ≤ 0 ∀i ∈ [l]}.

Denote by ∇D|H(W ) the gradient of D(W ) restricted to

H and let TWW be the tangent space of W at W . Suppose

that ∇qi(W ) 6= 0 whenever qi(W ) = 0 and, that these are

linearly independent. At any point W ∈ ∂H, we define the

outer normal cone

C(W ) , {v ∈ TWW | ∇qi(W )vT ≥ 0 (11)

for i ∈ [l] s.t. qi(W ) = 0}

We also assume that C(W ) is upper semicontinuous, i.e.,

if W̃ ∈ BH(W, δ), where BH(W, δ) is the ball of ra-

dius δ > 0 centered at W and intersected with H, then

C(W ) = ∩δ>0(∪W̃∈BH(W,δ)C(W̃ )). Let π(W ) ,

−t1[W ∈ ∂H] with t ∈ C(W ) minimal to resolve

the violated constraints of D|H(W ) at W ∈ ∂H so that

D|H(W ) + π(W ) points inside H. In particular, we

have π(W ) = −∑l
i=1 λi(W )∇qi(W ) ∈ −C(W ) where

{λi(W ) ≥ 0}li=1 are functions such that λi(W ) = 0 if

qi(W ) < 0.

Finally, define the set of stationary points SH , {W ∈
H|∇D|H(W ) + π(W ) = 0}. The set SH can be

divided into disjoint compact and connected subsets

S1, . . . , Sr, . . ..

We are now in position to state our first result:

Proposition 1. Assume that: (N1) σ ∈ C2
PB(R), (N2)

E[‖Y ‖m2 ‖X‖n2 ] < ∞∀m ∈ {0, 1, 2}, n ∈ N0, (N3)

the random variables {(F [s], X [s], Y [s])}s∈N+ are indepen-

dent copies of (F,X, Y ), and

(A2.4)

∞
∑

t=1

α{t} = ∞,

∞
∑

t=1

(α{t})2 < ∞. (12)

Let {W [t]}t∈N0 be the sequence of random variables gener-

ated by (10) with (8). Then, there is a set N of probability

zero such that for ω 6∈ N , {W [t](ω)} converges to a limit

set of the projected ODE

dW

dt
= ∇WD|H(W ) + π(W ). (13)

Moreover, if (N4) σ ∈ Cr
PB(R), with dim(W) ≤ r, (N5)

∇WD|H(W ) + π(W ) 6= 0 whenever ∇WD|H(W ) 6= 0,

then for almost all ω ∈ Ω, {W [t](ω)}t∈N converges to a

unique point in {W ∈ H|∇D|H(W ) = 0}.

Proof outline. The proof of Proposition 1 relies on the

framework of stochastic approximation in (Kushner & Yin,

2003). Specifically, Proposition 1 follows from Theo-

rem 2.3 on p. 127 if we can show that its conditions (A2.1)–

(A2.6) on p. 126 are satisfied. We verify these conditions in

Lemmas 1–3, which we explain next. For the derivations,

see Appendix A.

First we assume conditions (N1), (N2), (N3) and we prove

that the variance of the random update direction in (8) is

finite, which verifies (A2.1).

Lemma 1. Assume (N1)–(N3) from Proposition 1. Then

supt∈N E[‖∆[t+1]
i ‖2F] < ∞ for i = 0, 1, . . . , L.

We prove next that if σ ∈ Cr
PB(R) , then the random

update direction in (8), conditional on all prior updates,

has conditional expectation ∇D(W [t]). Lemma 2 verifies

(A2.2), (A2.3), and (A2.5):

Lemma 2. Assume (N2)–(N4) from Proposition 1. Then

E[∆[t+1]|Ft] = ∇D(W [t]). Furthermore, ∇D : W → W
is r − 1 times continuously differentiable.

From these conditions the first part of Proposition 1 fol-

lows. To prove the second part of Proposition 1, we have to

prove that the set of stationary points SH is well-behaved

in the sense that D|Si
(W ) is constant. If an objective func-

tion is sufficiently differentiable, this is guaranteed by the

Morse–Sard Theorem (Morse, 1939; Sard, 1942). In the

present case however we must take into account the possi-

bility of an intersection of the set of stationary points with

the boundary ∂H. Assuming (N4) and (N5) provides suffi-

cient conditions.

Lemma 3. If (N2)–(N5) hold, then D(W ) is constant on

each Si.

Discussion. The previous theorem guarantees that the

class of dropout algorithms we consider converges. In
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particular, in Proposition 1 the dependence structure of

(F,X, Y ) as random variables is not restricted and includes

commonly used dropout algorithms such as those used in

(Hinton et al., 2012; Wan et al., 2013). Furthermore, we al-

low for a general class of differentiable activation functions.

Proposition 1 includes also online and offline learning, de-

pending on which distribution we sample (X,Y ) from.

Examining Proposition 1 critically, note that it does not

give insight into the convergence rate or the precise station-

ary point of D(W ) that the iterates converge to. Hence, we

consider Proposition 1 as a first step to understand the con-

vergence properties of dropout algorithms. Also, a caveat

of the projection in (10) is that if we drop assumption (N5)

from Proposition 1, then spurious stationary points may ap-

pear in case ∇D(W ) ∈ C(W ) for some W ∈ ∂H or some

critical points lie outside H. However, we may be able

to avoid this issue by using a stochastic projection set H[t]

(Chen, 2006; Borkar, 2009) or, in practice, just take H large

enough in order to avoid spurious stationary points.

Since the class Cr
PB(R) contains polynomials of any de-

gree, we can also approximate the case where σ is contin-

uous and piecewise smooth, like for example ReLU(x) =
max(0, x), in the case that the data (X,Y ) has compact

support. Then, (W,F,X, Y ) lie in a compact set so by

Weierstrass approximation theorem we can find a sequence

{σn}n ⊂ Cr
PB(R) such that σn → σ uniformly in some

compact set Kn ⊂ R where Kn does not include the dis-

continuities of σ′. Then |(Ψn)W (x) −ΨW (x)| → 0 uni-

formly in H×supp(X) and |∇(Ψn)W (x) −∇ΨW (x)| →
0 uniformly in H\Kn, where Kn is such that we avoid the

discontinuities of ∇ΨW (x). In particular the minima of

Dn(W ) will be close to the global minima of D(W ). We

expect that then, an asymptotic analysis in the case that σ is

not differentiable can be carried out with Projected Stochas-

tic Subgradient Descent, which we leave for follow-up re-

search.

4. Convergence rate of GD on D(W ) for

arborescences with linear activation

Our second result in this paper pertains to the following reg-

ular GD algorithm on a dropout algorithm’s risk function:

W {t+1} = W {t} − α∇D(W {t}) for t ∈ N0. (14)

Here, we keep the step size α > 0 fixed. Note that this

algorithm generates a deterministic sequence {W {t}}t∈N0

as opposed to a sequence of random variables {W [t]}t∈N0

as generated by (7), (8).

We first give an explicit characterization of a dropout algo-

rithm’s risk function (9) in terms of paths in a graph that

holds for NNs with linear activation functions. Consider a

fixed, directed base graph G = (E ,V) without cycles and

in which all paths have length L, which describes a NN’s

structure as follows. Each vertex v ∈ V represents a neu-

ron of the NN, and each directed edge e = (u, v) ∈ E
indicates that neuron u’s output is input to neuron v. Let

G be the set of all subgraphs of the base graph G, and let

E(g) be the set of edges of subgraph g ∈ G. Let Γj
i (g; e)

be defined as the set of all length-L paths in graph g that

start at vertex i, traverse edge e, and end at vertex j. When-

ever one of the latter three conditions is not needed, the

subscript, argument, or superscript is dropped from the no-

tation, respectively. Note that to each edge e ∈ E in the

NN, a weight We ∈ R and a mask variable Fe ∈ {0, 1}
are associated. We can write W = R

|E| also. For every

path γ , (γ1, . . . , γL) ∈ Γ(g), we write Pγ ,
∏

e∈γ We

and Fγ ,
∏

e∈γ Fe for notational convenience. Finally,

let GF , (EF ,V) be the random subgraph of base graph

G that has edge set EF , {e ∈ E|Fe = 1}. We denote

µg , P[GF = g], and ηγ ,
∑

{g∈G|γ∈Γ(g)} µg. The next

lemma now holds, whose proof is in Appendix B.1:

Lemma 4. Assume (N6’) that the base graph G is a

fixed, directed graph without cycles in which all paths have

length L, (N7) that σ(t) = t, and (N8) that F is indepen-

dent of (X,Y ). Then

D(W ) =
∑

g∈G

µgE

[

dL
∑

e=1

(

Ye −
∑

γ∈Γe(g)

PγXγ0

)2
]

. (15)

Moreover D(W ) = J (W ) +R(W ), where

J (W ) =
∑

γ∈Γ(G)

ηγE[(YγL
− PγXγ0)

2], (16)

R(W ) = −
∑

g∈G

µgE

[

dL
∑

e=1

∑

γ∈Γe(g)

((

1− 1

|Γe(g)|
)

Y 2
e

− PγXγ0

∑

δ∈Γe(g)\{γ}

PδXδ0

)]

. (17)

For example in the case of Dropconnect (Wan et al., 2013),

where the masking variables {Fe}e∈E are independently

and identically distributed Bernoulli(p) random variables,

Lemma 4 holds with µg = p|E(g)|(1−p)|E(G)|−|E(g)|. Also

note that if |Γi(g)| = 1 ∀g ∈ G, i ∈ [d], such as when G
is an arborescence, then ΓγL(g) = {γ} ∀g ∈ G, γ ∈ Γ(g)
and consequently R(W ) = 0.

We now focus on a base graph that is an arborescence, see

Figure 2. We can then explicitly compute an upper bound

to the convergence rate of (14) in case σ(z) = z. To that

end, we first prove the following specification of Lemma 1.

Corollary 1. Assume (N6) that the base graph G
is an arborescence of depth L, and (N7)–(N8) from

Lemma 4. Then D(W ) = I(W ) + D(W opt),
where I(W ) ,

∑

γ∈Γ(G) νγ(zγ − Pγ)
2, D(W opt) =
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x1
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Figure 2. An example arborescence of depth L = 3.

∑

γ∈Γ(G) ηγ(E[Y
2
γL

] − E[YγL
Xγ0 ]

2/E[X2
γ0
]), and νγ ,

ηγE[X
2
γ0
], zγ , E[YγL

Xγ0 ]/E[X
2
γ0
] for γ ∈ Γ(G).

To derive an upper bound on the convergence rate, we use

that for the system of ODEs dW/ dt = −∇D(W ), there

are conserved quantities. Specifically, let L(g; f) denote

the leafs of the subtree of g ∈ G rooted at f ∈ E(g) and

L(G) , ∪f∈EL(G; f). Define

Cf = Cf (W ) , W 2
f −

∑

l∈L(G;f)

W 2
l for f ∈ E\L(G),

(18)

for W ∈ W . We also define Cmin , mine∈E\L(G) Ce,

and the sequence C
{t}
e = Ce(W

{t}) for t ∈ N+ which

we require later. For the function Cf in (18), we can prove

Lemma 5, the proof of which is in Appendix B.2.

Lemma 5. Assume (N2) from Proposition 1, and (N6’)–

(N8) from Lemma 4. Then under the negative gradient flow

dW/dt = −∇D(W ), dCf/dt = 0 for all f ∈ E\L(G).

We are almost in position to state our second result, and

will still benefit from more notation. We define ‖ν‖1 ,
∑

γ∈Γ(G) νγ and νmax , minγ∈Γ(G) νγ . For 0 < δ < M

we define S , {W ∈ W|M > |Wf | > δ > 0 ∀f ∈
E(G)\L(G);M > |Wf | ∀f ∈ L(G)}. We also define the

intervals If , [C
{0}
f /2, 3C

{0}
f /2] for f ∈ E\L(G) as well

as the set I , ×f∈E\L(G)If ⊆ R
|E|−|L(G)|. Let

B(ǫ, I) ,
{

W ∈ W
∣

∣I(W ) ≤ ǫ, (19)

W 2
f −

∑

l∈L(G;f)

W 2
l ∈ If for f ∈ E\L(G)

}

.

The following proposition now holds, and its proof can be

found in Appendix B.6.

Proposition 2. Assume (N2) from Proposition 1, (N6) from

Corollary 1, (N7)–(N8) from Lemma 4, (N9) that W {0} ∈
S ∩ B(ǫ, I) and ML ≥ |zγ | for all γ ∈ Γ(G), and (N10)

that 1
2Cmin(W

{0}) > δ2. Then if

α ≤ min
(

νmin
e−1/2(C

{0}
min)

L

8 ‖ν‖1 (2L− 1)M2(L−1)I(W {0})
, (20)

1

12νmax |Γ(G)|M2(L−1)
,

1

2νmin(C
{0}
min)

L−1

)

,

the iterates of (14) will satisfy

D(W {t})−D(W opt) ≤ (D(W {t})−D(W opt))e−
ατ
2 t.
(21)

where τ = 4νmine
−1/2(C

{0}
min)

L−1.

Assumptions (N9)–(N10) are satisfied, for example, when

initializing M > W
{0}
e >

√
2δ for e ∈ E\L(G) and

setting |Wl| ≤ δ/
√

|L(G)| for all l ∈ L(G) and ǫ =
I(W {0}).

For additional insight, we provide the following spec-

ification of Proposition 2 for the case of Dropconnect

(Wan et al., 2013). The proof of Corollary 2 is deferred

to Appendix B.7.

Corollary 2. Under the assumptions of Proposition 2,

if additionally {Fe}e∈E are independent and identically

distributed Bernoulli(p) random variables, then νmin =
νmax = E[X2]pL and νmin/ ‖ν‖1 = 1/dL. If α sat-

isfies (20) the iterates in (14) satisfy (21) with ατ =

O((pL(C
{0}
min)

2L)/(L(dL)
2(M2)2L)).

Proof outline. The proof of Proposition 2 is by dou-

ble induction on the statements A(t) ≡ {I(W {s}) ≤
I(W {s−1})e−2νminκα, ∀s ∈ [t]} and B(t) ≡ {W {s} ∈
K, ∀s ∈ [t]} where κ > 0 is a free parameter. Concretely,

we prove that there exist α and κ such that A(t) ∩B(t) ⇒
B(t+ 1) and A(t) ∩B(t+ 1) ⇒ A(t+ 1). Appendix B.6

describes in detail how the upcoming Lemmas 6–8 provide

sufficient conditions for the induction step. There we also

maximize the upper bound on the convergence rate over κ,

which gives the rate in (20).

Lemma 6 implies that B(ǫ, I) is compact and that D(W )
is β-smooth on the compact set K = S ∩ B(ǫ, I), i.e.,

D(W ′)−D(W ) ≤ ∇D(W )T(W ′ −W ) + β‖W ′ −W‖22
for W,W ′ ∈ K . Its proof is deferred to Appendix B.3.

Here, with a minor abuse of notation, we define also

B(ǫ, {Cf}f∈E\L(G)) ,
{

W ∈ W
∣

∣I(W ) ≤ ǫ, (22)

W 2
f −

∑

l∈L(G;f)

W 2
γl = Cf

}

where {γl} , Γl(G) for l ∈ L(G) if G is an arborescence.

Lemma 6. Assume (N2) from Proposition 1, and (N6) from

Corollary 1. Then:

(i) If ǫ > 0 and |Cf | < ∞ for f ∈ E\L(G), then the set

B(ǫ, {Cf}f∈E\L) is compact.

(ii) If maxγ∈Γ(G) |zγ | ≤ ML, then the function I(W ) is

β-smooth in S with β = 6νmax |Γ(G)|M2(L−1).
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Next, Lemma 7 gives a lower bound on the curvature of

D(W ) on K in the direction of ∇D(W ), in the form of a

Polyak–Łojasiewicz (PL)-inequality (Karimi et al., 2016).

Its proof is in Appendix B.4.

Lemma 7. Assume (N2) from Proposition 1, and (N6) from

Corollary 1. If W {t} ∈ S∩B(ǫ, I), then ‖∇D(W {t})‖22 ≥
4νmin(C

{t}
min)

(L−1)
(

D(W {t})−D(W opt)
)

.

Lemma 8 proves that the conserved quantities of the gradi-

ent flow remain bounded under the GD algorithm in (14).

This lemma allows us to keep track of the iterates in the

compact set K = S ∩ B(ǫ, I) by relating them to con-

served quantities and exploiting the fact that under GD,

|C{t+1}
f − C

{t}
f | has order O(α2). Appendix B.4 contains

its proof.

Lemma 8. Assume (N2) from Proposition 1, and (N6)

from Corollary 1. If W {t} ∈ S, and C
{t}
f > 0 for

all f ∈ E\L(G), then 4α2 ‖ν‖1 M2(L−1)
(

D(W {t}) −
D(W opt)

)

≥ |C{t+1}
f − C

{t}
f |.

Discussion. A dropout algorithm’s regularization proper-

ties depend on the base graph G as well as the distribu-

tion on F . The regularization contribution to a dropout’s

risk function is explicitly given in our path representation

in Lemma 4 by the term R(W ). Note that if the base graph

is an arborescence, then R(W ) = 0. This implies that the

minimum of D(W ) satisfies zγ = Pγ for all γ ∈ Γ(G) in

Corollary 1. We note here also that when we consider an

anti-arborescence, the term R(W ) does not vanish. This

suggests that when the input vector has a higher dimen-

sion than the output—when information gets compressed—

dropout algorithms can have increased regularization.

Observe in Corollary 2 that in the case of Dropconnect

(Wan et al., 2013), the convergence rate depends on pL and

(C
{0}
min/M

2)2L where C
{0}
min/M

2 < 1. First, this shows the

increased difficulty of training NNs as they become deeper,

also seen in other convergence results e.g. in (Shamir, 2018)

and (Arora et al., 2018). The exponential dependence in

L is moreover tight when using GD and is intrinsic to the

method (Shamir, 2018). Second, note that pL can be un-

derstood as the probability that Fγ = 1 for any fixed γ
when using Dropconnect. This term indicates that as NNs

become deeper, and the probability of masking an edge is

increased, the convergence rate of GD with dropout will

decrease exponentially depending on the probability p.

The bound on the convergence rate in Corollary 2 for Drop-

connect is strictly decreasing in p. However, this may not

be true for other NN configurations, where R(W ) 6= 0 may

induce a more complex dependence of the convergence rate

on p. In fact, there could be some optimal p∗ which de-

pends on the data. We expect that we can lift our results

to the stochastic dropout algorithm, in cases where in each

iteration of the FB algorithm with dropout, only a subset

of edges are updated. Finally, given a NN topology and

dropout algorithm with regularization term R(W ), there

may be a different NN topology and dropout algorithm

(i.e., distribution on F ) with regularization R̂(W ) that min-

imizes the runtime of the algorithm while also satisfying

|minW R̂(W )−minW R(W )| < ǫ for fair comparison.

5. Conclusion

This paper presented formal proof that a class of dropout

algorithms for neural networks, when projected to a com-

pact set, converge almost surely to a unique stationary set

of a projected system of ODEs. The result gives formal

guarantee that these dropout algorithms are well-behaved

for a wide range of NNs and activation functions, and will

at least asymptotically not suffer from percolative nature.

Additionally, we established an upper bound on the rate of

convergence of regular GD on the limiting ODE of dropout

algorithms for arborescences of arbitrary depth with linear

activation functions. While GD on the limiting ODE is not

strictly a dropout algorithm, the result is a major and neces-

sary step towards analyzing the convergence rate of actual

ones. Besides providing insight into the optimization of

NN using dropout algorithms, our results may be used to

indicate what a NN configuration should look like in order

to adjust the convergence rates for dropout.

As to future work, we see multiple directions:

– Theoretically, one may be interested in dropping the pro-

jection assumption. Proving a convergence result would

then become substantially more challenging, because a no-

tion of compactness must be proven first. We do not expect

that we can exploit conserved quantities since we may not

have such a symmetric optimization landscape. An alterna-

tive approach may be to use overparameterized networks

as in (Zou et al., 2018). Then, we can fit the data with

no training error and we expect to converge when initial-

izing close to a global minimum. However, the regulariza-

tion of a dropout algorithm may prevent the achievement

zero training loss and hence, a first characterization of the

global minima may be needed before obtaining a conver-

gence rate.

– If Assumption (N5) is weakened, then spurious station-

ary points may occur on the boundary of H. We expect

convergence to such points to be unlikely if the compact

set’s size is chosen sufficiently large, but we have not

proven such claim. Identifying the probability with which

a projected dropout algorithm converges to such an artifi-

cial stationary point by generalizing techniques from e.g.

(Dupuis & Kushner, 1985; 1989; Buche & Kushner, 2002),

would be interesting future work, and an excursion into

state-of-the-art mathematics of stochastic approximation.
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– On arborescences, there is no regularization by Dropout

algorithms. It would therefore be valuable to investigate the

convergence rate of GD on the limiting ODE of dropout al-

gorithms also on other graphs. The more paths exist within

the base graph that overlap one another, the more strongly

the weights depend on one another throughout the itera-

tions. These dependencies complicate the analysis consid-

erably. Also in case we have a compressing NN, the reg-

ularization will not vanish and the optimization landscape

will become more complex.
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A. Proof of Proposition 1

Proposition 1 can be proven using the framework of (Kushner & Yin, 2003). Specifically, Proposition 1 follows from

Theorem 2.3 in (Kushner & Yin, 2003). We will show that conditions (A2.1)–(A2.6) hold for Dropout SGD.

Preliminaries

We need to carefully track all sequences of random variables throughout this proof, so we repeat the definition of the class

of dropout algorithms we consider here for your convenience.

Definition 4 (Dropout algorithms). During its (t+ 1)-st feedforward step, the algorithm iteratively calculates

A
[t+1]
0 = X [t+1],

A
[t+1]
i = σ((W

[t]
i ⊙ F

[t+1]
i )A

[t+1]
i−1 ) (23)

for i = 1, 2, . . . , L− 1, to output

ΨF [t+1]⊙W [t](X
[t+1]) = (W

[t]
L ⊙ F

[t+1]
L )A

[t+1]
L−1 = A

[t+1]
L . (24)

Subsequentially for its (t+ 1)-st backpropagation step the algorithm calculates

R
[t+1]
L = (Y [t+1] − (W

[t]
L ⊙ F

[t+1]
L )A

[t+1]
L−1 ) ∈ R

dL ,

R
[t+1]
j = ((W

[t]
j+1 ⊙ F

[t+1]
j+1 )TR

[t+1]
j+1 )⊙ (σ′((W

[t]
j ⊙ F

[t+1]
j )A

[t+1]
j−1 )) ∈ R

di , (25)

iteratively for j = L− 1, . . . , 1. The algorithm then calculates

∆
[t+1]
i = −2F

[t+1]
i ⊙ (R

[t+1]
i (A

[t+1]
i−1 )T) (26)

for i = 1, . . . , L, and finally updates all weights according to (4).

We also start by proving a few useful bounds pertaining to the Frobenius norm, which we will later iterate.

Lemma 9. For any matrix A ∈ R
m×n and 1 ≤ k < ∞, it holds that

∑

i,j(1 + A2
ij)

k ≤ nm(1 + ‖A‖F)2k. For any two

matrices A ∈ R
m×n, B ∈ R

n×p and 0 ≤ k < ∞, it holds that (1 + ‖AB‖F)k ≤ (1 + ‖A‖F)k(1 + ‖B‖F)k . For any two

matrices A,B ∈ R
n×m, it holds that ‖A⊙B‖F ≤ ‖A‖F ‖B‖F.

Proof. Recall Minkowski’s inequality for sequences; that is
(
∑

i |xi + yi|k
)1/k ≤

(
∑

i |xi|k
)1/k

+
(
∑

i |yi|k
)1/k

, which

holds for 1 ≤ k < ∞. It (i) implies that for any matrix A ∈ R
n×m and 1 ≤ k < ∞, that

∑

i,j

(1 +A2
ij)

k
(i)

≤
(

(nm)1/k +
(

∑

i,j

|A2
i,j |k

)1/k
)k (ii)

≤ nm
(

1 +
(

∑

i,j

|A2
i,j |k

)1/k
)k

(27)

where (ii) we have used that the function zk is nondecreasing in z ≥ 0 whenever k ≥ 0. Because (iii) for the ℓk-norm for

sequences it holds that ‖x‖22k ≤ ‖x‖22 whenever 1 ≤ k < ∞, we obtain

∑

i,j

(1 +A2
ij)

k
(iii)

≤ nm(1 + ‖A‖2F)k
(iv)

≤ nm(1 + ‖A‖F)2k (28)

where (iv) we have used that the function (1 + z2)k ≤ (1 + z)2k for all z ≥ 0 whenever k ≥ 0. This proves the first

inequality.

The second inequality is an immediate consequence of the submultiplicativity property of the Frobenius norm and its

positivity, i.e.,

1 + ‖AB‖F ≤ 1 + ‖A‖F‖B‖F ≤ 1 + ‖A‖F + ‖B‖F + ‖A‖F‖B‖F. (29)

Raising to the k-th power left and right finishes its proof.

The third inequality follows from strict positivity of the summands:

‖A⊙B‖2F =
∑

i,j

A2
ijB

2
ij ≤

(

∑

i,j

A2
ij

)(

∑

i,j

B2
ij

)

= ‖A‖2F‖B‖2F. (30)

Each of the inequalities has now been shown.
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A.1. Boundedness of ∆[t+1] in expectation – Proof of Lemma 1

The idea is to expand the terms in ∆
[t+1]
i defined in Definition 4 recursively, and identify a polynomial in variables

{‖Y ‖n2‖X‖m2 }m∈N0 and n = 0, 1, 2.

First, we will prove two bounds on the activation function applied to an arbitrary matrix A. Recall that σ ∈ C2
PB(R) by

assumption (N1). There thus (i) exists some C0, k0 > 0 such that |σ(z)| ≤ C0(1 + z2)k0 for all z ∈ R, and there exists

some C1, k1 > 0 such that |σ′(z)| ≤ C1(1 + z2)k1 for all z ∈ R. Let k = max{1, k0, k1}. Then

‖σ(A)‖2F =
∑

i,j

|σ(Aij)|2
(i)

≤ C0

∑

i,j

(1 +A2
ij)

k
(28)

≤ C2(1 + ‖A‖F)2k (31)

for some constant C2 > 0. Similarly there exists some C3 > 0 such that ‖σ′(A)‖F ≤ C3(1 + ‖A‖F)k. Note furthermore

that for all l ≥ 0, (ii) by submultiplicativity of the Frobenius norm,

(1 + ‖Aσ(B)‖F)l
(ii)

≤ (1 + ‖A‖F‖σ(B)‖F)l
(31)

≤
(

1 + C
1/2
2 ‖A‖F(1 + ‖B‖F)k

)l ≤ C4(1 + ‖A‖F)l(1 + ‖B‖F)kl (32)

for C4 = max{1, Cl/2
2 } > 0. Again, a similar bound holds for σ′.

Next, note that we have by (i) submultiplicativity and (30) that

‖∆[t+1]
i ‖F = ‖F [t+1]

i ⊙ (R
[t+1]
i (A

[t+1]
i−1 )T)‖F

(i)

≤ ‖F [t+1]
i ‖F‖R[t+1]

i ‖F‖A[t+1]
i−1 ‖F. (33)

The first term is bounded with probability one: F
[t]
i,r,l ∈ {0, 1} for all i, r, l, t. For the second term, consider the following

bound:

‖R[t+1]
i ‖F (25)

= ‖(W [t]
i+1 ⊙ F

[t+1]
i+1 )TR

[t+1]
i+1 ⊙ σ′

(

(W
[t]
i ⊙ F

[t+1]
i )A

[t+1]
i−1

)

‖F
(30)

≤ ‖W [t]
i+1 ⊙ F

[t+1]
i+1 ‖F‖σ′

(

(W
[t]
i ⊙ F

[t+1]
i )A

[t+1]
i−1

)

‖F‖R[t+1]
i+1 ‖F (34)

for 1 ≤ i ≤ L, where we have also used the submultiplicative property. For the third term, consider the next bound: (i)

recursing (32) with A = I and B = (W
[t]
j ⊙ F

[t+1]
j )A

[t+1]
j−1 etc, we obtain that there exists some C5 > 0, say, so that

‖A[t+1]
j ‖F (23)

= ‖σ((W [t]
j ⊙ F

[t+1]
j )A

[t+1]
j−1 )‖F

(31)

≤ C2(1 + ‖(W [t]
j ⊙ F

[t+1]
j )A

[t+1]
j−1 ‖F)k

(29)

≤ C2(1 + ‖W [t]
j ⊙ F

[t+1]
j ‖F)k(1 + ‖A[t+1]

j−1 ‖F)k
(i)

≤ C5

(

1 + ‖X [t+1]‖2
)kj

j−1
∏

l=1

(

1 + ‖W [t]
l ⊙ F

[t+1]
l ‖F

)kj−l

(35)

for j = 1, 2, . . . , L− 1. Similar to the derivation in (35), we obtain instead with σ′ that there exists some C6 > 0 such that

‖σ′((W
[t]
j ⊙ F

[t+1]
j )A

[t+1]
j−1 )‖F ≤ C6

(

1 + ‖X [t+1]‖2
)kj

j−1
∏

l=1

(

1 + ‖W [t]
l ⊙ F

[t+1]
l ‖F

)kj−l

. (36)

Recall that ‖∆[t+1]
i ‖F ≤ ‖F [t+1]

i ‖F‖R[t+1]
i ‖F‖A[t+1]

i−1 ‖F. This, together with using (34) repeatedly for j = i, . . . , L − 1,

and (35), (36), yields

‖∆[t+1]
i ‖F

(34)

≤ ‖F [t+1]
i ‖F‖R[t+1]

L ‖F‖A[t+1]
i ‖F

L−1
∏

j=i

‖W [t]
j+1 ⊙ F

[t+1]
j+1 ‖F‖σ′

(

(W
[t]
j ⊙ F

[t+1]
j )A

[t+1]
j−1

)

‖F

(35)

≤ C5‖F [t+1]
i ‖F

(

1 + ‖X [t+1]‖2
)ki

i−1
∏

l=1

(

1 + ‖W [t]
l ⊙ F

[t+1]
l ‖F

)ki−l

× ‖R[t+1]
L ‖F

L−1
∏

j=i

‖W [t]
j+1 ⊙ F

[t+1]
j+1 ‖F‖σ′

(

(W
[t]
j ⊙ F

[t+1]
j )A

[t+1]
j−1

)

‖F
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(36)

≤ C7‖F [t+1]
i ‖F

(

1 + ‖X [t+1]‖2
)ki

i−1
∏

l=1

(

1 + ‖W [t]
l ⊙ F

[t+1]
l ‖F

)ki−l

× ‖R[t+1]
L ‖F

L−1
∏

j=i

‖W [t]
j+1 ⊙ F

[t+1]
j+1 ‖F

(

1 + ‖X [t+1]‖2
)kj

j
∏

l=1

(

1 + ‖W [t]
l ⊙ F

[t+1]
l ‖F

)kj−l

≤ C7‖F [t+1]
i ‖F‖R[t+1]

L ‖F
(

L−1
∏

j=i

‖W [t]
i+1 ⊙ F

[t+1]
i+1 ‖F

)(

L−1
∏

j=i

(

1 + ‖X [t+1]‖2
)2kj

j
∏

l=1

(

1 + ‖W [t]
l ⊙ F

[t+1]
l ‖F

)2kj−l)

= C7‖F [t+1]
i ‖F‖R[t+1]

L ‖F
(

L−1
∏

j=i

‖W [t]
i+1 ⊙ F

[t+1]
i+1 ‖F

)

(

1 + ‖X [t+1]‖2
)

∑L−1
j=i 2kj(

L−1
∏

j=i

j
∏

l=1

(

1 + ‖W [t]
l ⊙ F

[t+1]
l ‖F

)2kj−l)

.

(37)

Lastly, we bound ‖R[t+1]
L ‖F. By applying (i) subadditivity of the norm ‖A+B‖F ≤ ‖A‖F + ‖B‖F and then using the

elementary bound (a+ b)2 ≤ 2(a2 + b2) as well as the submultiplicativity property, we obtain

‖R[t+1]
L ‖F (25)

= ‖Y [t+1] − (W
[t]
L ⊙ F

[t+1]
L )A

[t+1]
L−1 ‖F

(i)

≤ ‖Y [t+1]‖22 + ‖W [t]
L ⊙ F

[t+1]
L ‖F‖A[t+1]

L−1 ‖F
(35)

≤ ‖Y [t+1]‖2 + ‖W [t]
L ⊙ F

[t+1]
L ‖F

(

1 + ‖X [t+1]‖2
)kL−1

L−1
∏

l=1

(

1 + 2‖W [t]
l ⊙ F

[t+1]
l ‖F

)kL−l

. (38)

By combining inequalities (37), (38), and upper bounding the exponent of the term 1 + ‖X [t+1]‖F in (38) by 2
∑L−1

j=1 kj ,

we conclude that

‖∆[t+1]
i ‖F ≤ C8‖Y [t+1]‖2

(

1 + ‖X [t+1]‖2
)2

∑L−1
j=1 kj

‖F [t+1]
i ‖FP1

(

‖W [t]
1 ⊙ F

[t+1]
1 ‖F, . . . , ‖W [t]

L ⊙ F
[t+1]
L ‖F

)

+ C9

(

1 + ‖X [t+1]‖2
)2

∑L
j=1 kj

‖F [t+1]
i ‖FP2(‖W [t]

1 ⊙ F
[t+1]
1 ‖F, . . . , ‖W [t]

L ⊙ F
[t+1]
L ‖F) (39)

for i = 1, . . . , L and some constants C8, C9 and polynomials P1(z1, . . . , zL), P2(z1, . . . , zL), say, the latter both in L

variables. Because of the projection and by definition of H, there exists a constant M such that ‖W [t]
i ‖F ≤ M with

probability one for all i = 1, . . . , L, t ∈ N+. Furthermore, ‖F [t]
i ‖F ≤ maxi=0,...,L−1

√

didi+1 with probability one for

all i = 1, . . . , L, t ∈ N+. These two bounds, together with (39) and the fact that P1, P2 are polynomials, as well as the

hypothesis that E[‖Y ‖m2 ‖X‖n2 ] < ∞∀m ∈ {0, 1, 2}, n ∈ N0, implies the result.

A.2. Conditional expectation of ∆[t+1] – Proof of Lemma 2

Condition (A2.2) is that each of the expectations of random directions ∆
[t+1]
i for i = 1, . . . , L conditional on Ft can

written as a function of the weights. Here, Ft denotes the smallest σ-algebra generated by ∪s≤t{W [0], (F [s], X [s], Y [s])}.

For the class of dropout algorithms under consideration, we show in Lemma 2 that this is true with the function be-

ing the gradient of dropout algorithm’s risk function in (9). Condition (A2.3), the continuity of the derivative, is also

one of Lemma 2’s consequences. Lastly, condition (A2.5) is guaranteed by Lemma 2, since it essentially proves that

E[∆[t+1]|Ft]−∇D(W [t]) = 0.

Proof. Let i ∈ {1, . . . , L}, r ∈ {1, . . . , di+1} and l ∈ {1, . . . , di}. Recall that Ft is the smallest σ-algebra generated by

{W [0], (F [s], X [s], Y [s])}s≤t, and note that W [t] is Ft-measurable. The (i) Ft-measurability of W [t] together with the (ii)

hypothesis that the sequences of random variables {(F [s], X [s], Y [s])}s∈N+ is i.i.d. implies that

E[∆
[t]
i,r,l|Ft]

(8)
= E

[

(

F
[t+1]
i,r,l FBF [t+1]⊙W [t](X [t+1], Y [t+1])

)

i,r,l

∣

∣

∣
Ft

]

(i,ii)
=

∫

Fi,r,lFBF⊙W [t](X,Y )i,r,l dP[F
[t+1] = F,X [t+1] = X,Y [t+1] = Y ]

(6)
=

∫

Fi,r,l
∂l(ΨF⊙W [t](X), Y )

∂(Fi,r,lWi,r,l)
dP[F [t+1] = F,X [t+1] = X,Y [t+1] = Y ]
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=

∫

∂l(ΨF⊙W [t](X), Y )

∂Wi,r,l
dP[F [t+1] = F,X [t+1] = X,Y [t+1] = Y ]. (40)

Next, we need to check that we can exchange the derivative and expectation. Note that we have the same assumptions

E[‖Y ‖m2 ‖X‖n2 ] < ∞∀m ∈ {0, 1, 2}, n ∈ N+ as Lemma 1. as well as σ ∈ Cr
PB(R). Therefore, by (39) in Lemma 1in

any compact K ⊂ W we have |∆[t+1]
i,r,l | is upper bounded by the right hand side of (39) and moreover E[∆

[t+1]
i,r,l ] ≤ CK for

some CK ≤ ∞ only dependent on K . The interchange is then warranted by the dominated convergence theorem. Hence

continuing from (40), we obtain

E[∆
[t]
i,r,l|Ft] =

∂

∂Wi,r,l

∫

l(ΨF⊙W [t](X), Y ) dP[F [t+1] = F,X [t+1] = X,Y [t+1] = Y ]
(9)
=

∂D(W [t])

∂Wi,r,l
. (41)

If σ ∈ Cr
PB(R), then by the chain rule and upper bounds for any multi-index s on the weights E a bound similar to (39)

holds:

|∂sl(Y,ΨW⊙F (X))| ≤ ‖Y ‖FP1,s(‖W1‖F , . . . , ‖WL‖F , {‖X‖j2}
ns,1

j=1 )+P2,s(‖W1‖F , . . . , ‖WL‖F , {‖X‖j2}
ns,2

j=1 ) (42)

where P1,s, P2,s are polynomials and ns,1, ns,2 are the top exponents in the expansion in ‖X‖F. Hence, using the as-

sumption E[‖Y ‖m2 ‖X‖n2 ] < ∞∀m ∈ {0, 1, 2}, n ∈ N+, we obtain for any W ∈ K ⊂ W a compact set that

E[|∂sl(Y,ΨW⊙F (X))|] ≤ CK . In particular we can apply dominated convergence and conclude D(W ) ∈ Cr−1(W)
with ∂sD(W ) = E[∂sl(Y,ΨW⊙F (X))].

A.3. Constant D(W ) on a critical set – Proof of Lemma 3

Verification of (A2.6): We need Sard’s theorem to prove Lemma 3, which gives sufficient conditions for condition (A2.6).

Proposition 3. (Sard, 1942) Let f : M → N be a f ∈ Cr map between manifolds with dim(M) = m, dim(N) = n. Let

Crit(f) = {x ∈ M |∇f(x) = 0} be the set of critical points of f . If r > m/n− 1, then f(Crit(f)) has measure zero.

With Proposition 3, we can now prove Lemma 3 assuming (N2)–(N5) from Proposition 1.

Proof. By Lemma 2, we have D(W ) ∈ Cr(W). By assumption (N5) we have that if W ∈ ∂H and D(W ) + π(W ) = 0,

then D(W ) = 0. Furthermore W ∈ Sj for some j, i.e., the critical points of D(W ) + π(W ) are {W ∈ W | ∇D(W ) =
0} ∩ H. We apply Sard’s theorem (Proposition 3) to D(W ). We have that if r ≥ dim(W), then D(Si) ⊆ R has measure

zero. Since Si is connected there is a continuous path za,b : [0, 1] → Si joining any two points a, b ∈ Si. By continuity

of D(W ) we must have then D(a) = D(b), since otherwise we would have [D(a),D(b)] ⊆ D(Si) which has positive

measure in R. Therefore D(Si) must be a constant.

Note that in the previous lemma the condition r ≥ dim(W) must hold since there are counterexamples when r < dim(W)
(Hajłasz, 2003).

Since Conditions (A2.1)–(A2.6) of Thm. 2.3 on p. 127 in (Kushner & Yin, 2003) are satisfied, the proof of Proposition 1

is now completed.
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B. Proof of Proposition 2

The proof uses double induction, which is a common approach for iterative schemes where boundedness of iterates and

convergence depend on one another. First, we obtain a path representation for D(W ) in Appendix B.1. Next, we prove

that there are conserved quantities in the flow of ∇D(W ) in Appendix B.2. Then, we prove a bound that guarantees a

notion of compactness in Appendix B.3. This is followed by a proof in Appendix B.4 that there is a PL-inequality. In

Appendix B.5, we prove that the conserved quantities also remain bounded through GD’s iterations. Finally, we perform

the double induction in Appendix B.6.

On the exchange of derivative and expectation in this section. We start by noting that whenever we make both Assumption

(N2) in Proposition 1 and (N7) in Lemma 4, that then the exchange of derivative and expectation is warranted. This occurs

several times throughout this section. We refer to the proof of Lemma 2 for the details.

B.1. Path representation of D(W ) – Proofs of Lemma 4 and Corollary 1

Proof of (15). Recall that GF = (EF ,V) is a random subgraph of G = (E ,V) with edge set EF = {e ∈ E|Fe = 1}. By (i)

the law of total expectation, and by (ii) independence of F and (X,Y ) :

D(W ) = E

[

dL
∑

i=1

(

Yf −
∑

γ∈Γi(G)

PγFγXγ0

)2
]

(i)
=

∑

g∈G

E

[

dL
∑

f=1

(

Yf −
∑

γ∈Γf (GF )

PγXγ0

)2
∣

∣

∣
{GF = g}

]

P[GF = g]

(ii)
=

∑

g∈G

µgE

[

dL
∑

f=1

(

Yf −
∑

γ∈Γf (g)

PγXγ0

)2
]

. (43)

Proof of (16). Expand (43) to find

D(W ) =
∑

g∈G

µgE

[

dL
∑

f=1

(

Y 2
f − 2Yf

∑

γ∈Γf(g)

PγXγ0 +
∑

γ∈Γf (g)

∑

δ∈Γf (g)

PγXγ0PδXδ0

)]

. (44)

Setting ηγ =
∑

{g∈G|γ∈Γ(g)} µg , we obtain

D(W ) =
∑

g∈G

µgE

[(

dL
∑

f=1

∑

γ∈Γf (g)

( Y 2
f

|Γf (g)| − 2YfPγXγ0

)

+
∑

γ∈Γ(g)

∑

δ∈ΓγL (g)

PγXγ0PδXδ0

)]

=
∑

γ∈Γ(G)

ηγE
[

(

YγL
− PγXγ0

)2
]

−
∑

g∈G

µgE

[

dL
∑

f=1

∑

γ∈Γf(g)

((

1− 1

|Γf (g)|
)

Y 2
f − PγXγ0

∑

δ∈Γf (g)\{γ}

PδXδ0

)]

(45)

after rearranging terms. This completes Lemma 4’s proof after identifying J (W ) and R(W ) here as the left and right sum,

respectively.

To prove Corollary 1, consider that since for an arborescence R(W ) = 0, we can write

∑

γ∈Γ(G)

ηγE
[

(

YγL
− PγXγ0

)2
]

=
∑

γ∈Γ(G)

ηγE[X
2
γ0
]
(

E[YγL
Xγ0 ]

E[X2
γ0
]

− Pγ

)2

+
∑

γ∈Γ(G)

ηγ

(

E[Y 2
γL

]− E[YγL
Xγ0 ]

2

E[X2
γ0
]

)

(iii)
= I(W ) +D(W opt). (46)

Here, (iii) follows because since I(W ) ≥ 0 and I(W ) = 0 at zγ = Pγ , what remains must be the optimum.

This completes the proofs of Lemma 4 and Corollary 1.
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B.2. Conserved quantities – Proof of Lemma 5

Proof. For any edge f ∈ E ,

Wf
∂D
∂Wf

(15)
=

∑

g∈G

µgE

[

d
∑

e=1

2
(

Ye −
∑

γ∈Γe(g)

PγXγ0

)(

∑

δ∈Γe(g;f)

PδXδ0

)

]

=
∑

g∈G

µgE

[

∑

δ∈Γ(g;f)

2
(

YδL −
∑

γ∈ΓδL(g)

PγXγ0

)

PδXδ0

]

. (47)

Note that Γ(g; l) = Γl(g) for any leaf l ∈ L(G) and g ∈ G, and therefore in particular

Wl
∂D
∂Wl

=
∑

g∈G

µg

∑

δ∈Γl(g)

E

[

2
(

YδL −
∑

γ∈ΓδL(g)

PγXγ0

)

PδXδL

]

. (48)

Recall that L(G; f) is the set of leafs of the subtree of the base graph G rooted at f ∈ E . By the fact that {Γl(g; f)}l∈L(G;f)

partitions Γ(g; f) for any g ∈ G, viz.,

Γ(g; f) = ∪l∈L(G;f)Γ
l(g; f), Γl1(g; f) ∩ Γl2(g; f) = ∅ for all l1 6= l2, g ∈ G, (49)

it follows that
∑

l∈L(G;f)

Wl
∂D
∂Wl

= Wf
∂D
∂Wf

. (50)

Note in fact that this proof works for any base graph G that has no cycles and only length-L paths, so not just an arbores-

cence. This is why we make Assumption (N6’) as opposed to the stronger Assumption (N6) in Corollary 1.

B.3. Compactness, and smoothness – Proof of Lemma 6

In the proof of Lemma 6, we will upper bound the operator norm of the Hessian. Recall that for a symmetric bilinear

matrix A we define ‖A‖op , sup‖v‖2=1

∥

∥vTAv
∥

∥

2
.

Proof of (i). By continuity of the conditions in (19), the set B(ǫ, {Cf}f∈E\L) is closed. We need to prove bound-

edness. Let W ∈ B(ǫ, {Cf}f∈E\L), and suppose w.l.o.g. that for some f∗ ∈ E\L we have |Wf∗ | > Q, where

Q > maxj∈E\L,γ∈Γ(G){|Cj | , |zγ |}. We want to find a path γ ∈ Γ(G) such that Pγ is large for a contradiction with the

assumption that I(W ) ≤ ǫ. By (18), we have the inequality
∑

l∈L(G;f∗) W
2
l > Q2−|Cf∗ | so that for some l∗ ∈ L(G; f∗)

we must haveW 2
l∗ > (Q−|Cf∗ |)/ |L(G; f∗)|. Consequently, we have by (18) that |We|2 > (Q2−|Cf∗ |)/|L(G; f∗)|−|Ce|

for any edge e ∈ γ in any path γ ∈ Γl∗(G) except for the edge f∗ where we have |Wf∗ | > Q by assumption. In particular,

we have the bound |We| > O(Q) for any edge e ∈ γ for any path γ ∈ Γ(G; f∗). Therefore if we pick γ ∈ Γ(G; f∗) we

have

ǫ
(19)

≥ I(W ) ≥ νγ(zγ − Pγ)
2 ≥ νγ(|Pγ | − |zγ |)2 > O(Q2L) (51)

for sufficiently large Q, which is a contradiction. We must thus have |Wf∗ | ≤ Q for some Q < ∞. If on the other hand

|Wl| > Q for some l ∈ L(G; f∗), by (18) we must also have (Wf∗)2 > Q2 +Cf∗ > O(Q2) for sufficiently large Q. This

case is, thus, the same as before.

Proof of (ii). Using a regular upper bound to the entries of ∇2I(W ) when W ∈ S will suffice. Element-wise, we have

(∇2I(W ))i,j =















2
∑

δ∈Γ(G;i)∩Γ(G;j) νδ

(

Pδ

Wi

Pδ

Wj
− Pδ

WiWj
(zγ − Pγ)

)

, if i 6= j,Γ(G; i) ∩ Γ(G; j) 6= ∅,
2
∑

γ∈Γ(G;i) νγ(
Pγ

Wi
)2 if i = j,

0 otherwise.

(52)

Hence, noting that since we have |Wf | ≤ M for all f ∈ E on S, we can bound |Pγ/Wf | ≤ ML−1, |zγ | ≤ ML and the

other terms similarly. We upper bound the number of terms in the sum over Γ(G; i) and Γ(G; i) ∩ Γ(G; j) by |Γ(G)| and

νγ ≤ νmax. Adding all terms, we obtain that 6νmax |Γ(G)|M2(L−1) is an upper bound for each of the entries of ∇2I(W ).
This gives an upper bound ‖∇2I(W )‖op ≤ 6νmax |Γ(G)|M2(L−1) in S.
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B.4. PL-inequality on a compact set – Proof of Lemma 7

Recall the definition of a PL-inequality:

Definition 5. Let u ∈ C2(K,R) where K ⊂ R
n is compact and K\∂K 6= ∅. Denote by u∗ = minx∈K u(x) and suppose

that u∗ ∈ K\∂K . We say that u satisfies a Polyak–Łojasiewicz (PL) inequality if there exist a τK > 0 depending only on

K such that

‖∇u(x)‖22 ≥ τK(u(x)− u∗) for all x ∈ K. (53)

A PL-inequality together with β-smoothness on a compact set will imply that D(W {t})−D(W opt) decreases. To see this,

note that by (i) β-smoothness, and (ii) the update rule

D(W {t+1})−D(W {t})
(i)

≤ ∇D(W {t})T(W {t+1} −W {t}) + β‖W {t+1} −W {t}‖22
(ii)
= α

(

βα− 1
)

‖∇D(W {t})‖22 (54)

If furthermore α ≤ 1/(2β), then also βα− 1 ≤ −1/2. Together with (53), and after rearranging terms, one finds that

D(W {t+1})−D(W {t}) ≤ ατK
2

(D(W {t})−D(W opt)) for all W ∈ K. (55)

By (iii) 1 + x ≤ ex for all x ∈ R, we obtain (21). What remains is to now actually prove that there is a PL-inequality in

some compact set, that the iterates remain in that compact set, and that the function is β-smooth.

Proof of 7. First note that if l ∈ L(G) and γ ∈ Γ(G; l), the indexes of the weights in the product |P {t}
γ /W

{t}
l | belong to

the index set E\L(G). The proof follows (i) by restricting the sum, and (ii) from the fact that for every path γ ∈ Γ(G) in

an arborescence G, there is exactly one leaf l ∈ L(G) such that γl = γ. Thus

∑

e∈E

∣

∣

∣

∂

∂We
I(W {t})

∣

∣

∣

2

= 4
∑

e∈E

∣

∣

∣

∑

γ∈Γ(G;e)

νγ
P

{t}
γ

W
{t}
e

(zγ − P {t}
γ )

∣

∣

∣

2 (i)

≥ 4
∑

l∈L(G)

∣

∣

∣
νγl

P
{t}

γl

W
{t}
l

(zγl − P
{t}

γl )
∣

∣

∣

2

(ii)
= 4

∑

γ∈Γ(G)

ν2γ

∣

∣

∣

P
{t}
γ

W
{t}
γL

(zγ − P {t}
γ )

∣

∣

∣

2 (iii)

≥ 4νmin

(

min
f∈E\L(G)

|W {t}
f |2

)L−1I(W {t}), (56)

where in (iii) we have used the bound |W {t}
i | ≥ mine∈E\L(G) |W {t}

e | for all i ∈ E\L(G) and similarly with νγ ≥ νmin for

γ ∈ Γ(G).

Finally, by (18), we have mine∈E\L(G) |W {t}
e |2 ≥ C

{t}
min. This completes the proof.

B.5. Conserved quantities remain bounded throughout GD – Proof of Lemma 8

Proof. Pick f ∈ E\L(G). By (i) Corollary 1, and (ii) Lemma 5, we have

C
{t+1}
f = (W

{t+1}
f )2 −

∑

l∈L(G;i)

(W
{t+1}
l )2

(14)
=

(

W
{t}
f − α

∂

∂Wf
D(W {t})

)2

−
∑

l∈L(G;f)

(

W
{t}
l − α

∂

∂Wl
D(W {t})

)2

(i)
=

(

W
{t}
f − α

∂

∂Wf
I(W {t})

)2

−
∑

l∈L(G;f)

(

W
{t}
l − α

∂

∂Wl
I(W {t})

)2

(ii)
= C

{t}
f + α2

(( ∂

∂Wf
I(W {t})

)2

−
∑

l∈L(G;f)

( ∂

∂Wl
I(W {t})

)2)

= C
{t}
i + 4α2

((

∑

γ∈Γ(G;f)

νγ
P

{t}
γ

W
{t}
f

(zγ − P {t}
γ )

)2

−
∑

l∈L(G;f)

ν2γl

( P
{t}

γl

W
{t}
l

)2

(zγl − P
{t}

γl )2
)

(57)
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≥ C
{t}
f − 4α2

(

∑

l∈L(G;f)

ν2γl

( P
{t}

γl

W
{t}
l

)2

(zγl − P
{t}

γl )2
)

. (58)

By Cauchy–Schwartz we also have

(

∑

γ∈Γ(G;f)

νγ
P

{t}
γ

W
{t}
f

(zγ − P {t}
γ )

)2

≤
(

∑

γ∈Γ(G;f)

νγ

)

∑

γ∈Γ(G;f)

νγ

( P
{t}
γ

W
{t}
l

)2

(zγ − P {t}
γ )2. (59)

If we have C
{t}
f > 0, then (W

{t}
f )2 > (W

{t}
γL )2 for any γ ∈ Γ(G; f). Thus, combining the estimate (57) with (59) we

obtain

C
{t+1}
f ≤ C

{t}
f + 4

(

∑

γ∈Γ(G;f)

νγ

)

α2
(

∑

l∈L(G;f)

νγl

( P
{t}

γl

W
{t}
l

)2

(zγl − P
{t}

γl )2
)

. (60)

Extending the sums in (60) from Γ(G; f) to Γ(G) and from L(G; f) to L(G), respectively, yields

C
{t+1}
f − C

{t}
f ≤ 4 ‖ν‖1 α2

(

max
e∈E\L(G)

|W {t}
e |2

)L−1I(W {t}), (61)

where we have used the bound |Wf | ≤ maxe∈E\L(G) |We| for all f ∈ E\L(G). Similarly, using (58) and the trivial bound

νγ ≤ ‖ν‖1 for any γ ∈ Γ, and by absorbing one νγ-term into I(W )’s expression, we obtain

C
{t+1}
f ≥ C

{t}
f − 4 ‖ν‖1 α2

(

max
e∈E\L(G)

|W {t}
e |2

)L−1I(W {t}) (62)

for the lower bound.

Since W {t} ∈ S by assumption, we have the bound maxe∈E\L(G) |W {t}
e |2 ≤ M2. This completes the proof.

B.6. Double induction

We now use Lemmas 6– 8 together in a double induction to finally prove Proposition 2. Let κ > 0 and denote the

statements:

A(t) ≡ {I(W {s}) ≤ I(W {s−1})e−2νminκα, ∀s ∈ [t]}, (63)

B(t) ≡ {W {s} ∈ B(ǫ, I) ∩ S ∀s ∈ [t]}. (64)

We will prove that there exists a κ > 0 such that when choosing α appropriately, firstly

A(t) ∩B(t) ⇒ B(t+ 1), (65)

and secondly,

A(t) ∩B(t+ 1) ⇒ A(t+ 1). (66)

Step 1: A(t) ∩B(t) ⇒ B(t + 1). We need to prove that W {t+1} ∈ B(ǫ, I) ∩ S assuming (63) and (64). Using (61) from

the proof of Lemma 8 repeatedly with the bound maxe∈E |W {t}
e | ≤ M , we obtain

C
{t+1}
f ≤ C

{0}
f + 4 ‖ν‖1 M2(L−1)α2

t
∑

s=0

I(W {s}). (67)

By (63), we can upper bound

t
∑

s=0

I(W {s})
(63)

≤
t

∑

s=0

I(W {0}) exp(−2νminκαs) ≤ I(W {0})
1

1− e−2νminκα
. (68)
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If furthermore (C1) 0 < 2νminκα < 1, then (i) the inequality 1/(1− exp(−2νminκα)) < 1/(νminκα) holds, so that

C
{t+1}
min

(67)

≤ C
{0}
min + 4 ‖ν‖1 M2(L−1)α2

t
∑

s=0

I(W {s})
(i)

≤ C
{0}
min + 4

‖ν‖1
νmin

ML−1ακ−1I(W {0}). (69)

In the same manner, we can also prove (69) for C
{0}
f instead of C

{0}
min. This yields

C
{t+1}
f ≤ C

{0}
f + 4

‖ν‖1
νminκ

M2(L−1)αI(W {0}) (70)

for any f ∈ E\L(G). Similarly, for a lower bound, we can use (62) repeatedly together with the bound (68) and condition

(C1) yielding

C
{t+1}
f ≥ C

{0}
f − 4

‖ν‖1
νminκ

M2(L−1)αI(W {0}). (71)

for any f ∈ E\L(G). Now, suppose (D1) C
{0}
min − κ1/(L−1) > 0 and let (C2) the step size satisfy

α ≤ νminκ
C

{0}
min − κ1/(L−1)

8 ‖ν‖1 M2(L−1)I(W {0})
. (72)

We have (i) by (70) and (71) that

C
{t+1}
f

(i)
∈ [C

{0}
f − 4

‖ν‖1
νmin

M2(L−1)ακ−1I(W {0}), C
{0}
f + 4

‖ν‖1
νmin

M2(L−1)ακ−1I(W {0})]

(72)

⊆ [C
{0}
f − 1

2
(C

{0}
min − κ1/(L−1)), C

{0}
f +

1

2
(C

{0}
min − κ1/(L−1))]

(D1)

⊆ [C
{0}
f − C

{0}
f /2, C

{0}
f + C

{0}
f /2] ⊆ [C

{0}
f /2, 3C

{0}
f /2] = If . (73)

Then W {t+1} ∈ B(ǫ, I) by (19). Hence, M > W
{t+1}
f

(18)
>

√

1/2C
{0}
f ≥

√

1/2C
{0}
min > δ for any f ∈ E\L(G).

Moreover, since C
{t+1}
e > 0 for all e ∈ E\L(G),we have that if f ∈ L(G), then M2 > (W

{t+1}
j )2 > (W

{t+1}
f )2 for

some j ∈ E\L(G). Consequently we also obtain M ≥ |W {t+1}
f | and W {t+1} ∈ S.

Step 2: A(t) ∩B(t + 1) ⇒ A(t + 1). Suppose that W {s} ∈ B(ǫ, I) ∩ S for s = 0, 1, . . . , t+ 1. Using the bound in (70)

which requires the induction hypothesis A(t) and (C1) for C
{t}
min, we obtain

C
{t}
min ≥ C

{0}
min − 4

‖ν‖1
νminκ

M2(L−1)αI(W {0}). (74)

Suppose now for a moment that (C2) the right-hand side of (74) is positive for some sufficiently small α. We could then

use the PL inequality from Lemma 7 together with the bound mine∈E\L(G) |W {t}
e |2(L−1) ≥ (C

{t}
min)

L−1, that is,

‖∇I(W {t})‖22 ≥ 4νmin(C
{t}
min)

L−1I(W {t}). (75)

To see how, note that the argumentation around (55) together with (75) and (i) the induction hypothesis B(t+ 1) we have

W {t},W {t+1} ∈ B(ǫ, I) ∩ S and (ii) the clause (L1) α ≤ 1/(2β), implies

I(W {t+1})
(i,ii, 75)

≤ I(W {t}) exp
(

−2νminα(C
{t}
min)

L−1
)

(74)

≤ I(W {t}) exp
(

−2νminα
(

C
{0}
min − 4

‖ν‖1
νminκ

M2(L−1)αI(W {0})
)

(iii)

≤ I(W {0}) exp
(

−2νminα
(

C
{0}
min − 4

‖ν‖1
νminκ

M2(L−1)αI(W {0})
)L−1 − 2νminακt

)

(76)

where we have also used (iii) the induction hypothesis A(t), i.e., that I(W {t}) ≤ I(W {0}) exp(−2νminκαt) holds.
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We now investigate the exponent in (76) for a moment. Assuming (C2) and if (C3) the right-hand side of (76) is furthermore

smaller than I(W {0}) exp(−2νminκα(t+1)), then the induction step would be complete. Note finally that both conditions

(C2) and (C3) are satisfied when choosing

κ ≤
(

C
{0}
min − 4

‖ν‖1
νmin

M2(L−1)ακ−1I(W {0})
)L−1

(77)

or equivalently

α ≤ νminκ
C

{0}
min − κ1/(L−1)

4 ‖ν‖1 M2(L−1)I(W {0})
. (78)

To also satisfy condition (C1), we thus require that

α ≤ min
( 1

2νminκ
, νminκ

C
{0}
min − κ1/(L−1)

4 ‖ν‖1 M2(L−1)I(W {0})

)

. (79)

Step 3. Let us summarize. Convergence occurs at rate at most 2νminκα if conditions (L1), (D1), (C1)–(C3) hold. Hence

we have to choose κ > 0 such that C
{0}
min − κL−1 > 0 and

α ≤ min
(

νminκ
C

{0}
min − κ1/(L−1)

8 ‖ν‖1 M2(L−1)I(W {0})
,
1

2β
,

1

2νminκ

)

. (80)

Note that we can maximize the convergence rate 2νminακ by maximizing κ2(C
{0}
min − κ1/(L−1)), which occurs when

κ = (C
{0}
min)

L−1(1 + 1/(2(L− 1)))−(L−1) ≥ e−1/2(C
{0}
min)

L−1. Substituting this in (80) we require a step size

α ≤ min
(

νmin
e1/2(C

{0}
min)

L

8 ‖ν‖1 (2L− 1)M2(L−1)I(W {0})
,
1

2β
,

1

2νmin(C
{0}
min)

L−1

)

. (81)

Finally, we have the bound β ≤ 6νmax |Γ(G)|M2(L−1) from Lemma 6 in S, so that

α ≤ min
(

νmin
e1/2(C

{0}
min)

L

8 ‖ν‖1 (2L− 1)M2(L−1)I(W {0})
,

1

12νmax |Γ(G)|M2(L−1)
,

1

2νmin(C
{0}
min)

L−1

)

. (82)

This completes our proof of Proposition 2.

B.7. Convergence rate in the case of Dropconnect – Proof of Corollary 2

Suppose that the base graph G has no cycles and every path is of length L. Then by definition in Lemma 4, we have

ηγ =
∑

{g∈G|γ∈Γ(g)}

P[GF = g] =
∑

g∈G

1[γ ∈ Γ(g)]P[GF = g]

=
∑

g∈G

P[γ ∈ Γ(g)|GF = g]P[GF = g] = P[γ ∈ Γ(GF )]
(i)
= pL (83)

where (i) we have used Dropconnect’s distribution on F .

Now suppose that additionally we make the stronger assumption that G is an arborescence. Then by definition in Corol-

lary 1 νγ = E[X2]ηγ , and subsequently we can calculate ‖ν‖1 = E[X2]
∑

γ∈Γ(G) νγ = E[X2] |Γ(G)| pL = E[X2]dLp
L.

Now, since by assumption maxγ |zγ | ≤ ML and |Wf | ≤ M for all f ∈ E , then I(W {0}) ≤ O(|Γ(G)|M2L) so

that substitution of in the definition of α in Proposition 2 yields α = O((C
{0}
min)

L/(LM4L)), where we have used that

Cmin ≤ M2. Finally multiplying by τ gives the rate ατ = O((pL(C
{0}
min)

2L)/(L(dL)
2M4L).

Substituting these results in the rate τα in Proposition 2 yields the result.


