A A list of symbols used

Symbols

Norms

$\|\cdot\|_{p}$
$\|\cdot\|_{F}$
$\|\cdot\|$
$d_{\mathrm{TV}}(\cdot, \cdot)$
Sets
\mathbb{S}^{n-1}
Δ^{n-1}
$\Delta^{n \times(n-1)}$
$\mathbb{N}_{0} \triangleq\{0,1,2, \ldots\}$
$\mathbb{N}_{+} \triangleq\{1,2,3, \ldots\}$
$\mathbb{R} \triangleq(-\infty, \infty)$
$[n]=\{1,2, \ldots, n\}$
Perm(n)
Asymptotics
$f(n)=\omega(g(n))$
$f(n)=\Omega(g(n))$
$f(n)=O(g(n))$
$f(n) \sim g(n)$
$f(n)=o(g(n))$
$X_{n}=\Omega_{\mathbb{P}}\left(a_{n}\right)$
$X_{n}=O_{\mathbb{P}}\left(a_{n}\right)$
$X_{n} \asymp_{\mathbb{P}}\left(a_{n}\right)$
$X_{n}=o_{\mathbb{P}}\left(a_{n}\right)$
"an absolute constant"
Block Markov Chain
$n \in \mathbb{N}_{+}$
$K \in \mathbb{N}_{+}$
$\mathcal{V}_{1}, \ldots, \mathcal{V}_{K} \subseteq[n] \triangleq \mathcal{V}$
$\alpha_{1}, \ldots, \alpha_{K} \in(0,1)$
$\alpha_{\text {min }}>0, \alpha_{\text {max }}$
$\sigma:[n] \rightarrow[K]$
$\left\{X_{t}\right\}_{t \geq 0}$
$p \in \mathbb{\Delta}^{K \times(K-1)}, P, Q \in \mathbb{\Delta}^{n \times(n-1)}$
$\eta>1$
$\pi \in \Delta^{K-1}, \Pi \in \Delta^{n-1}$
$P^{*} \in \mathbb{\Delta}^{n \times(n-1)}$
$\delta(P) \in(0, \infty)$
ℓ_{p}-norm for sequences.
Frobenius norm for matrices.
Spectral norm for matrices.
Total variation distance between two distributions.

The n-dimensional unit sphere
Probability simplex of dimension $n-1$.
Set of n-dimensional left-stochastic matrices.
Set of nonnegative integers.
Set of strictly positive integers.
Set of reals.
Set of integers 1 through n.
All permutations of length n.
Small-omega notation.
$\liminf _{n \rightarrow \infty} f(n) / g(n)=\infty$
Big-omega notation.
$\liminf _{n \rightarrow \infty} f(n) / g(n)>0$
Big-o notation.
$\limsup _{n \rightarrow \infty} f(n) / g(n)<\infty$
Asymptotic equivalence.
$\lim _{n \rightarrow \infty} f(n) / g(n)=1$
Little-o notation.
$\limsup _{n \rightarrow \infty} f(n) / g(n)=0$
Omega-p notation.
$\forall_{\varepsilon} \exists_{\delta_{\varepsilon}, N_{\varepsilon}}: \mathbb{P}\left[\left|X_{n} / a_{n}\right| \leq \delta_{\varepsilon}\right] \leq \varepsilon \forall_{n>N_{\varepsilon}}$
Stochastic boundedness.
$\forall_{\varepsilon} \exists \delta_{\varepsilon}, N_{\varepsilon}: \mathbb{P}\left[\left|\frac{X_{n}}{a_{n}}\right| \geq \delta_{\varepsilon}\right] \leq \varepsilon \forall_{n>N_{\varepsilon}}$
Equivalence-p notation.
$\forall_{\varepsilon} \exists_{\delta_{\varepsilon}^{-}, \delta_{\varepsilon}^{+}, N_{\varepsilon}}: \mathbb{P}\left[\delta_{\varepsilon}^{-} \leq\left|X_{n} / a_{n}\right| \leq \delta_{\varepsilon}^{+}\right] \geq 1-\varepsilon \forall_{n>N_{\varepsilon}}$
Convergence in probability.
$\mathbb{P}\left[\left|\frac{X_{n}}{a_{n}}\right| \geq \delta\right] \rightarrow 0 \forall_{\delta>0} \Leftrightarrow \forall_{\varepsilon, \delta} \exists_{N_{\varepsilon, \delta}}: \mathbb{P}\left[\left|\frac{X_{n}}{a_{n}}\right| \geq \delta\right] \leq \varepsilon \forall_{n>N_{\varepsilon, \delta}}$
A constant independent of n.
Number of states.
Number of clusters.
Clusters, and set of all states.
$\mathcal{V}=\cup_{k=1}^{K} \mathcal{V}_{k}$, and $\mathcal{V}_{a} \cap \mathcal{V}_{b}=\emptyset \forall_{a \neq b}$
Relative sizes of the clusters.
$\alpha_{k} \triangleq \lim _{n \rightarrow \infty}\left|\mathcal{V}_{k}\right| / n$.
Minimum and maximum relative sizes of the clusters.
Cluster assignment.
Markov chain.
Transition matrices.
$P_{x, y} \triangleq \frac{p_{\sigma(x), \sigma(y)}}{\left|\mathcal{V}_{\sigma(y)}\right|-1[\sigma(x)=\sigma(y)]} \mathbb{1}[x \neq y] \forall_{x, y \in \mathcal{V}}$
Assumed separability constant.
$\exists_{1<\eta}: \max _{a, b, c}\left\{p_{b, a} / p_{c, a}, p_{a, b} / p_{a, c}\right\} \leq \eta$
(Limiting) Equilibrium distribution.
$\Pi_{x} \triangleq \lim _{t \rightarrow \infty} \mathbb{P}\left[X_{t}=x\right] \forall x \in \mathcal{V}$
$\pi_{k} \triangleq \lim _{n \rightarrow \infty} \sum_{x \in \mathcal{V}_{k}} \Pi_{x} \forall_{k \in[K]}$
Time-reversed transition matrix.
$P_{x, y}^{*} \triangleq \frac{P_{x, y}}{\Pi_{x}} \Pi_{y}$
Dobrushin's ergodic coefficient.
$\delta(P) \triangleq \frac{1}{2} \sup _{x, y \in \mathcal{V}} \sum_{z \in \mathcal{V}}\left|P_{x, z}-P_{y, z}\right|$
$0 \leq t_{\text {mix }}(\varepsilon) \leq-c_{\text {mix }} \ln \varepsilon$
γ_{ps}
Information bound
$\mathbb{P}_{P}\left[X_{0}=x_{0}, \ldots, X_{T}=x_{T}\right]$
V^{*}
Φ
Ψ
\mathcal{Q}
$\mathcal{Q}(k, l)$
$L \triangleq \ln \frac{\mathbb{P}_{Q}\left[X_{0}, X_{1}, \ldots, X_{T}\right]}{\mathbb{P}_{P}\left[X_{0}, X_{1}, \ldots, X_{T}\right]}$
$I_{c}(q \| p)$
$I_{a, b}(q \| p)$
$I_{a, b}(\alpha, p)$
$0 \leq J(\alpha, p) \leq I(\alpha, p)<\infty$

Generic algorithm quantities

$T \in \mathbb{N}_{+}$
$X_{0}, X_{1}, \ldots, X_{T}$
$\hat{N} \in \mathbb{N}_{0}^{n \times n}$
$\hat{\mathcal{V}}_{1}, \ldots, \hat{\mathcal{V}}_{K}$
$\gamma^{\text {opt }} \in \min _{\gamma \in \operatorname{Perm}(K)}\left|\bigcup_{k=1}^{K} \hat{\mathcal{V}}_{\gamma(k)} \backslash \mathcal{V}_{k}\right|$
$\mathcal{E} \subset \mathcal{V}$

Regime terminologies

"asymptotically accurate detection"
"asymptotically exact detection"
"dense regime"
"critical regime"
"sparse regime"

Spectral clustering algorithm $\Gamma \subseteq \mathcal{V}$

\hat{N}_{Γ}
$U \Sigma V^{\mathrm{T}}$
$\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$
$\hat{R} \triangleq \sum_{k=1}^{K} \sigma_{k} U_{\cdot, k} V_{\cdot, k}{ }^{\mathrm{T}}$

Mixing time.
$t_{\text {mix }}(\varepsilon) \triangleq \min \left\{t \geq 0: \sup _{x \in \mathcal{V}} d_{\mathrm{TV}}\left(P_{x, \cdot}^{t}, \Pi\right) \leq \varepsilon\right\}$
We prove the second inequality, with $c_{\text {mix }}$ being an absolute constant.
Pseudo spectral gap.
$\gamma_{\mathrm{ps}} \triangleq \max _{i \geq 1} \frac{1-\lambda\left(\left(P^{*}\right)^{i} P^{i}\right)}{i}$
Probability of a sample path.
$\mathbb{P}_{P}\left[X_{0}=x_{0}, \ldots, X_{T}=x_{T}\right] \triangleq \prod_{t=1}^{T} P_{x_{t-1}, x_{t}}$
Vertex chosen uniformly at random from two clusters.
$V^{*} \stackrel{d}{=} \operatorname{Unif}\left(\mathcal{V}_{a} \cup \mathcal{V}_{b}\right), a, b \in[K], a \neq b$
Probability measure of the true model.
I.e., under P and cluster assignments $\mathcal{V}_{1}, \ldots, \mathcal{V}_{K}$.

Probability measure of the modified model.
I.e., under Q which is a perturbation of P constructed after the random vertex V^{*} was moved into its own cluster.
Set of all possible change-of-measure parameters.
$\mathcal{Q} \triangleq\left\{\left(q_{k, 0}, q_{0, k}\right)_{k=0, \ldots, K} \in(0, \infty) \mid q_{0,0}=0, \sum_{l=1}^{K} q_{0, l}=1\right\}$
Sets of change-of-measure parameters leading to confusion between assigning to either cluster k, l.
$\mathcal{Q}(k, l) \triangleq\left\{q \in \mathcal{Q} \mid I_{k}(q \| p)=I_{l}(q \| p)\right\} \neq \emptyset, k \neq l$
Log-likelihood ratio.
Leading order coefficient in an asymptotic expansion of the loglikelihood ratio.
$I_{c}(q \| p) \triangleq \lim _{n \rightarrow \infty} \frac{n}{T} \mathbb{E}_{Q}\left[L \mid \sigma\left(V^{*}\right)=c\right]$
Deconditioned leading order coefficient in an asymptotic expanding of the log-likelihood ratio.
$I_{a, b}(q \| p) \triangleq \lim _{n \rightarrow \infty} \frac{n}{T} \mathbb{E}_{\Psi}[L]$
Separation between cluster a and b.
$I_{a, b}(\alpha, p) \triangleq \sum_{k=1}^{K} \frac{1}{\alpha_{a}}\left(\pi_{a} p_{a, k} \ln \frac{p_{a, k}}{p_{b, k}}+\pi_{k} p_{k, a} \ln \frac{p_{k, a} \alpha_{b}}{p_{k, b} \alpha_{a}}\right)+\left(\frac{\pi_{b}}{\alpha_{b}}-\frac{\pi_{a}}{\alpha_{a}}\right)$
Information quantities.
$J(\alpha, p) \triangleq \min _{k \neq l} \min _{q \in \mathcal{Q}(k, l)} I_{k, l}(q \| p)$
$\left.\left.I(\alpha, p) \triangleq \min _{a \neq b} I_{a, b}\right) \alpha, p\right)$

Observation length.
Sample path of our Markov chain.
Observation matrix.
Each entry contains the number of times the Markov chain jumped from x to y, i.e.,
$\hat{N}_{x, y} \triangleq \sum_{t=0}^{T-1} \mathbb{1}\left[X_{t}=x, X_{t+1}=y\right] \forall_{x, y \in \mathcal{V}}$
Approximated cluster assignments.
Permutation that minimizes the overlap between the true clusters and a cluster assignment.
Set of misclassified vertices.
$\mathcal{E} \triangleq \cup_{k=1}^{K} \hat{\mathcal{V}}_{\gamma^{\mathrm{opt}}(k)} \backslash \mathcal{V}_{k}$
$\mathbb{E}_{P}[|\mathcal{E}|]=o(n)$
$\mathbb{E}_{P}[|\mathcal{E}|]=o(1)$
$T=\omega(n \ln n)$
$T \sim c n \ln n$ for some absolute constant $c>0$
$\omega(n)=T=o(n \ln n)$
Truncated vertices.
This set is obtained from \mathcal{V} by removing the $\lfloor n \exp (-(T / n) \ln (T / n))\rfloor$ states with the highest numbers of visits in the observed sample path of length T.
Truncated observation matrix.
This matrix is obtained from \hat{N} by setting all entries on the rows and columns corresponding to setates not in Γ to zero.
Singular value decomposition of \hat{N}_{Γ}.
Singular values of \hat{N}_{Γ}.
Best rank- K approximation of \hat{N}_{Γ}.
$\mathcal{N}_{x} \triangleq\left\{y \quad \mathcal{V} \left\lvert\, \sqrt{\left\|\hat{R}_{x, \cdot}-\hat{R}_{y, \cdot}\right\|_{2}^{2}+\left\|\hat{R}_{\cdot, x}-\hat{R}_{\cdot, y}\right\|_{2}^{2}} \leq \frac{1}{n}\right.\right.$.
$z_{1}^{*}, \ldots, z_{K}^{*} \in \mathcal{V}$
Cluster improvement algorithm $\hat{p}, \hat{\pi}, \hat{\alpha}$
$u_{x}^{[t]}(c)$
$\mathcal{H} \subseteq \mathcal{V}$
$\left.\left(\frac{T}{n}\right)^{3 / 2}\left(\ln \frac{T}{n}\right)^{4 / 3}\right\}$
Iteratively constructed cluster centers.
Approximated BMC parameters.
Approximated difference between two log-likelihood functions. $u_{x}^{[t]}(c) \triangleq\left\{\sum_{k=1}^{K}\left(\hat{N}_{x, \hat{\mathcal{V}}_{k}^{[t]}} \ln \hat{p}_{c, k}+\hat{N}_{\hat{\mathcal{V}}_{k}^{[t]}, x} \ln \frac{\hat{p}_{k, c}}{\hat{\alpha}_{c}}\right)-\frac{T}{n} \cdot \frac{\hat{\pi}_{c}}{\hat{\alpha}_{c}}\right\}$
Set of well-behaved vertices.

