A A list of symbols used

Symbols

Norms	
$\ \cdot\ _p$	ℓ_p -norm for sequences.
$\ \cdot\ _{\mathrm{F}}$	Frobenius norm for matrices.
•	Spectral norm for matrices.
$d_{\mathrm{TV}}(\cdot,\cdot)$	Total variation distance between two distributions.
Sets	
\mathbb{S}^{n-1}	The n -dimensional unit sphere
Δ^{n-1}	Probability simplex of dimension $n-1$.
$\Delta n \times (n-1)$	Set of n -dimensional left-stochastic matrices.
$\mathbb{N}_0 \triangleq \{0, 1, 2, \ldots\}$	Set of nonnegative integers.
$\mathbb{N}_{+} \triangleq \{1, 2, 3, \ldots\}$	Set of strictly positive integers.
$\mathbb{R} \triangleq (-\infty, \infty)$	Set of reals.
$[n] = \{1, 2, \dots, n\}$	Set of integers 1 through n .
$\operatorname{Perm}(n)$	All permutations of length n .
Asymptotics	F
$f(n) = \omega(g(n))$	Small-omega notation.
$f(n) = \frac{1}{2} \left(g(n) \right)$	$\liminf_{n\to\infty} f(n)/g(n) = \infty$
$f(n) = \Omega(g(n))$	Big-omega notation.
f(n) = 22(g(n))	$\liminf_{n\to\infty} f(n)/g(n) > 0$
f(n) = O(g(n))	Big-o notation.
f(n) = O(g(n))	$\limsup_{n\to\infty} f(n)/g(n) < \infty$
$f(n) \sim g(n)$	Asymptotic equivalence.
f(n) = g(n)	$\lim_{n\to\infty} f(n)/g(n) = 1$
f(n) = o(g(n))	$\lim_{n\to\infty} \int \langle n \rangle / g(n) = 1$ Little-o notation.
f(n) = O(g(n))	$\limsup_{n\to\infty} f(n)/g(n) = 0$
$X_n = \Omega_{\mathbb{P}}(a_n)$	Omega-p notation.
$A_n = \mathfrak{SLP}(a_n)$	$\forall_{\varepsilon} \exists_{\delta_{\varepsilon},N_{\varepsilon}} : \mathbb{P}[X_n/a_n \leq \delta_{\varepsilon}] \leq \varepsilon \forall_{n>N_{\varepsilon}}$
$X_n = O_{\mathbb{P}}(a_n)$	$\forall \varepsilon - \delta_{\varepsilon}, N_{\varepsilon} \cdot \mathbb{I}[\mathcal{A}_{n}/u_{n} \leq \theta_{\varepsilon}] \leq \varepsilon \ \forall n > N_{\varepsilon}$ Stochastic boundedness.
$\Lambda_n = \mathcal{O}_{\mathbb{P}}(u_n)$	$\forall_{\varepsilon} \exists_{\delta_{\varepsilon}, N_{\varepsilon}} : \mathbb{P}\left[\left \frac{X_n}{a_n}\right \geq \delta_{\varepsilon}\right] \leq \varepsilon \forall_{n > N_{\varepsilon}}$
$X_n \asymp_{\mathbb{P}} (a_n)$	Equivalence-p notation.
	$\forall_{\varepsilon} \exists_{\delta_{\varepsilon}^{-}, \delta_{\varepsilon}^{+}, N_{\varepsilon}} : \mathbb{P}[\delta_{\varepsilon}^{-} \leq X_{n}/a_{n} \leq \delta_{\varepsilon}^{+}] \geq 1 - \varepsilon \forall_{n > N_{\varepsilon}}$
$X_n = o_{\mathbb{P}}(a_n)$	Convergence in probability.
	$\mathbb{P}\left[\left \frac{X_n}{a_n}\right \geq \delta\right] \to 0 \forall_{\delta>0} \Leftrightarrow \forall_{\varepsilon,\delta} \exists_{N_{\varepsilon,\delta}} : \mathbb{P}\left[\left \frac{X_n}{a_n}\right \geq \delta\right] \leq \varepsilon \forall_{n>N_{\varepsilon,\delta}}$
"an absolute constant"	A constant independent of n .
Block Markov Chain	11 constant independent of 10
$n \in \mathbb{N}_+$	Number of states.
$K \in \mathbb{N}_+$	Number of clusters.
$\mathcal{V}_1, \dots, \mathcal{V}_K \subseteq [n] \triangleq \mathcal{V}$	Clusters, and set of all states.
$V_1, \ldots, V_K \subseteq [n] = V$	$\mathcal{V} = \bigcup_{k=1}^{K} \mathcal{V}_k$, and $\mathcal{V}_a \cap \mathcal{V}_b = \emptyset \forall_{a \neq b}$
$\alpha_1, \ldots, \alpha_K \in (0, 1)$	Relative sizes of the clusters.
$\alpha_1,\ldots,\alpha_K\subset(0,1)$	$\alpha_k \triangleq \lim_{n \to \infty} \mathcal{V}_k /n.$
$\alpha_{\min} > 0, \alpha_{\max}$	$\alpha_k = \min_{n \to \infty} \nu_k /n$. Minimum and maximum relative sizes of the clusters.
$\sigma: [n] \to [K]$	Cluster assignment.
$\{X_t\}_{t\geq 0}$	Markov chain.
$p \in \Delta \mathbf{X}^{K \times (K-1)}, P, Q \in \Delta \mathbf{X}^{n \times (n-1)}$	Transition matrices.
$p \in \mathbb{Z}$, $1, \emptyset \in \mathbb{Z}$	$p \triangleq p_{\sigma(x),\sigma(y)} \mathbb{1}[x \neq y] \forall \dots$
	$P_{x,y} \triangleq \frac{p_{\sigma(x),\sigma(y)}}{ \mathcal{V}_{\sigma(y)} - \mathbb{I}[\sigma(x) = \sigma(y)]} \mathbb{1}[x \neq y] \forall_{x,y \in \mathcal{V}}$
$\eta > 1$	Assumed separability constant.
4 K 1 4 m 1	$\exists_{1 < \eta} : \max_{a,b,c} \{ p_{b,a} / p_{c,a}, p_{a,b} / p_{a,c} \} \le \eta$
$\pi \in \Delta^{K-1}, \Pi \in \Delta^{n-1}$	(Limiting) Equilibrium distribution.
	$\Pi_x \triangleq \lim_{t \to \infty} \mathbb{P}[X_t = x] \forall_{x \in \mathcal{V}}$
	$\pi_k \triangleq \lim_{n \to \infty} \sum_{x \in \mathcal{V}_k} \Pi_x \forall_{k \in [K]}$
$P^* \in \Delta \!\!\!\! \Delta^{n \times (n-1)}$	Time-reversed transition matrix.
	$P_{x,y}^* riangleq rac{P_{x,y}}{\Pi_x} \Pi_y$
$\delta(P) \in (0, \infty)$	Dobrushin's ergodic coefficient.
	$\delta(P) \triangleq \frac{1}{2} \sup_{x,y \in \mathcal{V}} \sum_{z \in \mathcal{V}} P_{x,z} - P_{y,z} $

 $0 \le t_{\text{mix}}(\varepsilon) \le -c_{\text{mix}} \ln \varepsilon$

Mixing time.

 $t_{\text{mix}}(\varepsilon) \triangleq \min\{t \geq 0 : \sup_{x \in \mathcal{V}} d_{\text{TV}}(P_{x,\cdot}^t, \Pi) \leq \varepsilon\}$ We prove the second inequality, with c_{mix} being an absolute constant.

Pseudo spectral gap. $\gamma_{\text{ps}} \triangleq \max_{i \geq 1} \frac{1 - \lambda((P^*)^i P^i)}{i}$

 $\gamma_{\rm ps}$

Information bound

 $\mathbb{P}_P[X_0 = x_0, \dots, X_T = x_T]$

Φ

Q Q(k,l)

 $L \triangleq \ln \frac{\mathbb{P}_Q[X_0, X_1, \dots, X_T]}{\mathbb{P}_P[X_0, X_1, \dots, X_T]}$ $I_c(q||p)$

 $I_{a,b}(q||p)$

 $I_{a,b}(\alpha,p)$

 $0 \le J(\alpha, p) \le I(\alpha, p) < \infty$

Generic algorithm quantities

 $T \in \mathbb{N}_+$ X_0, X_1, \ldots, X_T $\hat{N} \in \mathbb{N}_0^{n \times n}$

 $\hat{\mathcal{V}}_1,\ldots,\hat{\mathcal{V}}_K$ $\gamma^{\text{opt}} \in \min_{\gamma \in \text{Perm}(K)} \left| \bigcup_{k=1}^{K} \hat{\mathcal{V}}_{\gamma(k)} \backslash \mathcal{V}_{k} \right|$

 $\mathcal{E} \subset \mathcal{V}$

Regime terminologies

"asymptotically accurate detection" "asymptotically exact detection"

"dense regime" "critical regime"

"sparse regime"

Spectral clustering algorithm

 $\Gamma \subseteq \mathcal{V}$

 \hat{N}_{Γ}

 $\begin{aligned} \sigma_1 &\geq \sigma_2 \geq \dots \geq \sigma_n \geq 0 \\ \hat{R} &\triangleq \sum_{k=1}^K \sigma_k U_{\cdot,k} V_{\cdot,k}^{\mathrm{T}} \end{aligned}$

Probability of a sample path.

 $\mathbb{P}_{P}[X_{0} = x_{0}, \dots, X_{T} = x_{T}] \triangleq \prod_{t=1}^{T} P_{x_{t-1}, x_{t}}$ Vertex chosen uniformly at random from two clusters.

 $V^* \stackrel{d}{=} \text{Unif}(\mathcal{V}_a \cup \mathcal{V}_b), a, b \in [K], a \neq b$ Probability measure of the true model.

I.e., under P and cluster assignments $\mathcal{V}_1, \ldots, \mathcal{V}_K$.

Probability measure of the modified model.

I.e., under Q which is a perturbation of P constructed after the random vertex V^* was moved into its own cluster.

Set of all possible change-of-measure parameters.

 $\mathcal{Q} \triangleq \left\{ (q_{k,0}, q_{0,k})_{k=0,\dots,K} \in (0,\infty) \middle| q_{0,0} = 0, \sum_{l=1}^K q_{0,l} = 1 \right\}$ Sets of change-of-measure parameters leading to confusion between assigning to either cluster k, l.

 $Q(k,l) \triangleq \{q \in Q | I_k(q||p) = I_l(q||p)\} \neq \emptyset, k \neq l$

Log-likelihood ratio.

Leading order coefficient in an asymptotic expansion of the loglikelihood ratio.

 $I_c(q||p) \triangleq \lim_{n \to \infty} \frac{n}{T} \mathbb{E}_Q[L|\sigma(V^*) = c]$

Deconditioned leading order coefficient in an asymptotic expanding of the log-likelihood ratio.

 $I_{a,b}(q||p) \triangleq \lim_{n \to \infty} \frac{n}{T} \mathbb{E}_{\Psi}[L]$

Separation between cluster a and b.

 $I_{a,b}(\alpha,p)\triangleq\textstyle\sum_{k=1}^{K}\frac{1}{\alpha_{a}}\bigg(\pi_{a}p_{a,k}\ln\frac{p_{a,k}}{p_{b,k}}+\pi_{k}p_{k,a}\ln\frac{p_{k,a}\alpha_{b}}{p_{k,b}\alpha_{a}}\bigg)+\bigg(\frac{\pi_{b}}{\alpha_{b}}-\frac{\pi_{a}}{\alpha_{a}}\bigg)$

Information quantities.

 $J(\alpha, p) \triangleq \min_{k \neq l} \min_{q \in \mathcal{Q}(k, l)} I_{k, l}(q || p)$

 $I(\alpha, p) \triangleq \min_{a \neq b} I_{a,b}(\alpha, p)$

Observation length.

Sample path of our Markov chain.

Observation matrix.

Each entry contains the number of times the Markov chain jumped

from x to y, i.e., $\hat{N}_{x,y} \triangleq \sum_{t=0}^{T-1} \mathbb{1}[X_t = x, X_{t+1} = y] \, \forall_{x,y \in \mathcal{V}}$

Approximated cluster assignments.

Permutation that minimizes the overlap between the true clusters and a cluster assignment.

Set of misclassified vertices.

 $\mathcal{E} \triangleq \bigcup_{k=1}^{K} \hat{\mathcal{V}}_{\gamma^{\mathrm{opt}}(k)} \backslash \mathcal{V}_{k}$

 $\mathbb{E}_P[|\mathcal{E}|] = o(n)$ $\mathbb{E}_P[|\mathcal{E}|] = o(1)$ $T = \omega(n \ln n)$

 $T \sim cn \ln n$ for some absolute constant c > 0

 $\omega(n) = T = o(n \ln n)$

Truncated vertices.

This set is obtained from \mathcal{V} by removing the $|n \exp(-(T/n) \ln (T/n))|$ states with the highest numbers of visits in the observed sample path of length T.

Truncated observation matrix.

This matrix is obtained from \hat{N} by setting all entries on the rows and columns corresponding to setates not in Γ to zero.

Singular value decomposition of \hat{N}_{Γ} .

Singular values of N_{Γ} .

Best rank-K approximation of \hat{N}_{Γ} .

$$\mathcal{N}_x$$

Neighborhood.

Neighborhood.
$$\mathcal{N}_x \triangleq \left\{ y \in \mathcal{V} \middle| \sqrt{\|\hat{R}_{x,\cdot} - \hat{R}_{y,\cdot}\|_2^2 + \|\hat{R}_{\cdot,x} - \hat{R}_{\cdot,y}\|_2^2} \right. \leq \frac{1}{n} \cdot \left(\frac{T}{n} \right)^{3/2} \left(\ln \frac{T}{n} \right)^{4/3} \right\}$$
 Iteratively constructed cluster centers.

 $\begin{aligned} z_1^*, \dots, z_K^* &\in \mathcal{V} \\ \textbf{Cluster improvement algorithm} \end{aligned}$

$$\hat{p},\hat{\pi},\hat{\epsilon}$$

$$u_x^{[t]}(c)$$

$$\mathcal{H}\subseteq\mathcal{V}$$

Approximated BMC parameters. Approximated difference between two log-likelihood functions.

The proximated difference between two log inclined united
$$u_x^{[t]}(c) \triangleq \left\{ \sum_{k=1}^K \left(\hat{N}_{x,\hat{\mathcal{V}}_k^{[t]}} \ln \hat{p}_{c,k} + \hat{N}_{\hat{\mathcal{V}}_k^{[t]},x} \ln \frac{\hat{p}_{k,c}}{\hat{\alpha}_c} \right) - \frac{T}{n} \cdot \frac{\hat{\pi}_c}{\hat{\alpha}_c} \right\}$$
 Set of well-behaved vertices.