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Markov chains for error accumulation in quantum circuits
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We study a model for the accumulation of errors in multi-qubit quantum computations, as well as
a model describing continuous errors accumulating in a single qubit. By modeling the error process
in a quantum computation using two coupled Markov chains, we are able to capture a weak form
of time-dependency between errors in the past and future. By subsequently using techniques from
the field of discrete probability theory, we calculate the probability that error measures such as the
fidelity and trace distance exceed a threshold analytically. The formulae cover fairly generic error
distributions, cover multi-qubit scenarios, and are applicable to e.g. the randomized benchmarking
protocol. To combat the numerical challenge that may occur when evaluating our expressions,
we additionally provide an analytical bound on the error probabilities that is of lower numerical
complexity, and we also discuss a state space reduction that occurs for stabilizer circuits. Finally,
taking inspiration from the field of operations research, we illustrate how our expressions can be used
to e.g. decide how many gates one can apply before too many errors accumulate with high probability,
and how one can lower the rate of error accumulation in existing circuits through simulated annealing.

I. INTRODUCTION

The development of a quantum computer is expected
to revolutionize computing by being able to solve hard
computational problems faster than any classical com-
puter [I]. However, present-day state-of-the-art quantum
computers are prone to errors in their calculations due to
physical effects such as unwanted qubit—qubit interactions,
qubit crosstalk, and state leakage [2]. Minor errors can
be corrected, but error correction methods will still be
overwhelmed once too many errors occur [3H5]. Quan-
tum circuits with different numbers of qubits and circuit
depths have been designed to implement algorithms more
reliably [6], and the susceptibility of a circuit to the ac-
cumulation of errors is an important evaluation criterion.
We therefore study now Markov chains that describe the
accumulation of errors in quantum circuits. Different
types of errors [7] that can occur and are included in
our model are e.g. Pauli channels [I], Clifford channels
[8, @], depolarizing channels [I], and small rotational er-
rors [10, II]. If the random occurrence of such errors
only depends on the last state of the quantum mechanical
system, the probability that error measures such as the
fidelity and trace distance accumulate beyond a threshold
can be related to different hitting time distributions of
two coupled Markov chains. These hitting time distri-
butions are then calculated analytically using techniques
from probability theory and operations research.

Error accumulation models that share similarities with
the Markov chains under consideration here can primarily
be found in the literature on randomized benchmarking
[12]. From the modeling point of view, the dynamical
description of error accumulation that we adopt is shared
in [I3HI6]. These articles however do not explicitly tie
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the statistics of error accumulation to a hitting time
analysis of a coupled Markov chain. Furthermore, while
Markovianity assumptions on e.g. noise are common [17],
the explicit mention of an underlying random walk is
restricted to a few papers only [14] [I8]. From the analysis
point of view, research on randomized benchmarking has
predominantly focused on generalizing expressions for the
expected fidelity over time. For example, the expected
decay rates of the fidelity are analyzed for cases of random-
ized benchmarking with restricted gate sets [19], Gaussian
noise with time-correlations [20], gate-dependent noise
[16], and leakage errors [2I]; and the expected loss rate
of a protocol related to randomized benchmarking is cal-
culated in [22]. In this article, we focus instead on the
probability distributions of both the error and maximum
error — which capture the statistics in more detail than
an expectation — for arbitrary distance measures, and in
random as well as nonrandom quantum circuits. Finally,
[13, M4, 16, 21] resort to perturbation or approximate
analyses (via e.g. Taylor expansions, and independence
or decorrelation assumptions) to characterize the fidelity,
whereas here we provide the exact, closed-form expres-
sions for the distributions. Our bridging of techniques
from probability theory and operations research to the
domain of quantum computing is a new angle.

To be precise: this article first studies a model for
discrete Markovian error accumulation in a multi-qubit
quantum circuit. We suppose for simplicity that both
the quantum gates and errors belong to a finite unitary
group G, CU(2™), where U(2"™) is the unitary group for
n qubits. The group G,, can e.g. be the generalized Pauli
group (i.e., the discrete Heisenberg—Weyl group), or the
Clifford group. By modeling the quantum computation
with and without errors as two coupled Markov chains liv-
ing on the state space consisting of pairs of elements from
these groups, we are able to capture a weak form of time-
dependency within the process of error accumulation. To
see this, critically note that the assumption of a Markov
property does not imply that the past and the future in
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the quantum computation are independent given any in-
formation concerning the present [23]. We must also note
that while the individual elements of our two-dimensional
Markov chain belong to a group, the two-dimensional
Markov chain itself, here, is generally not a random walk
on a group. Lastly, our Markov chain model works for
an arbitrary number of qubits. These model features are
all relevant to the topic of error modeling in quantum
computing, and since the Markov property is satisfied
in randomized benchmarking, the model has immediate
application. Secondly, in this article we briefly study
a known random walk model on the three-dimensional
sphere [24]. This model is commonly used to describe
the average dephasing of a single qubit (or spin) [25].
We characterize the distribution and expectation of the
trace distance measuring the error that is accumulated
over time. This is, essentially, a refinement to provide
information about the higher-order statistics of the error
accumulation in a single qubit.

It should be noted that the numerical complexity of
our exact expressions, however, can be high for large
quantum circuits. The precise difficulty of evaluating our
expressions depends on the particulars of the quantum
circuit one looks at. For practical purposes, we therefore
also provide an analytical bound on the maximum error
probability that is of lower numerical complexity. Ad-
ditionally, we discuss the reduction in complexity that
occurs when starting a quantum computation from a
stabilizer state: the coupled Markov chain’s state space
then reduces in size. The article [I5] also notes the high
computational complexity of error analysis in quantum
circuits in general. The issue is there approached com-
binatorially by converting circuits into directed graphs,
tracing so-called fault-paths through these graphs, and
therewith calculating or estimating the success rates of
circuits.

Finally, we use the expressions that describe how likely
it is that errors accumulate to answer two operational
questions that will help advance the domain of practical
quantum computing [26]. First, we calculate and bound
analytically how many quantum gates ¢ one can apply
before an error measure of your choice exceeds a threshold
0 with a probability above 7. This information is useful
for e.g. deciding how often a quantum computer should
perform repairs on qubits, and is particularly opportune
at this moment since quantum gates fail O(0.1-1%) of
the time [20]. Related but different ideas can be found
in e.g. [7, §2.3], where the accumulation of bit-flips and
rotations on a repetition code is studied and a time to fail-
ure is derived, and in [27), §V], where an upper bound on
the number of necessary measurements for a randomized
benchmarking protocol is derived. Second, using tech-
niques from optimization, we design a simulated annealing
method that improves existing circuits by swapping out
gate pairs to achieve lower rates of error accumulation.
We also discuss conditions under which this tailor-made
method is guaranteed to find the best possible circuit.
Both of these excursions illustrate how the availability of

an analytical expression for the accumulation of errors al-
lows us to proceed with second-tier optimization methods
to facilitate quantum computers in the long-term.

This article is structured as follows. In Section [T, we
give the model aspects pertaining to the quantum com-
putation (gates, error dynamics, and error measures) and
we introduce the coupled Markov chain that describes
error accumulation. In Section [T we provide the rela-
tion between the probability of error and the hitting time
distributions, and we derive the error distributions as well
as its bound. We also calculate the higher-order statistics
of an error accumulation model for a single qubit that
undergoes (continuous) random phase kicks and depolar-
ization. In Section [[V] we illustrate our theoretical results
by comparing to numerical results of a quantum simulator
we wrote for this article. In Section [V} we discuss the
simulated annealing scheme. Finally, in Section [VI] we
conclude with ideas for future research.

II. MODEL AND COUPLED MARKOV CHAIN
A. Gates and errors in quantum computing

It is generally difficult to describe large quantum sys-
tems on a classical computer for the reason that the state
space required increases exponentially in size with the
number of qubits [28]. However, the stabilizer formalism
is an efficient tool to analyze such complex systems [29].
Moreover, the stabilizer formalism covers many paradoxes
in quantum mechanics [30], including the Greenberger—
Horne—Zeilinger (GHZ) experiment [31], dense quantum
coding [32], and quantum teleportation [33]. Specifically,
the stabilizer circuits are the smallest class of quantum
circuits that consist of the following four gates: w = e'™/4,
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These four gates are closed under the operations of ten-
sor product and composition [34]. As a consequence of
the Gottesman—Knill theorem, stabilizer circuits can be
efficiently simulated on a classical computer [35].
Unitary stabilizer circuits are also known as the Clifford
circuits; the Clifford group C,, can be defined as follows.
First: let P = {I,X,Y,Z} denote the Pauli matrices
and let P, £ {01 R Qo |o; € P} denote the Pauli
matrices on n qubits. The Pauli matrices are commonly
used to model errors that can occur due to the interactions
of the qubit with its environment [36]. In the case of a
single qubit, the matrix I represents that there is no
error, the matrix X that there is a bit-flip error, the
matrix Z that there is a phase-flip error, and the matrix
Y that there are both a bit-flip and a phase-flip error.



The multi-qubit case interpretations follows analogously.
Second: let P = P,\ I®". We now define the Clifford
group on n qubits by C, £ {U € U(2") | 0 € +P} =
UoU' € £P;}\U(1). The fact that C, is a group can
be verified by checking the two necessary properties (see
Appendix [A]). The Clifford group on n qubits is finite [37]

and is of size

n

Cal =2 [T (4 - 1),

i=1

Here we ignore the global phase since it has no physical
significance. For a single qubit, a representation for the
Clifford group C; = {¢1,c¢a,- - , 24} can be enumerated
and its elements are for example shown in [I2] and [I4].

B. Dynamics of error accumulation

Suppose that we had a faultless, perfect quantum com-
puter. Then a faultless quantum mechanical state p; at
time ¢ could be calculated under a gate sequence U, =
{Uy,...,U,} from the initial state py = [1bo) (1| Here
7 < oo denotes the sequence length, and ¢t € {0,1,--- ,7}
enumerates the intermediate steps. On the other hand,
with an imperfect quantum computer, a possibly faulty
quantum mechanical state o; at time ¢ would be cal-
culated under both U; and some (unknown) noise se-
quence & = {Aq,...,A:} starting from an initial state
o0 = |Wg) (| possibly different from py. We define the
set of all pure states for n qubits as S™ and consider the
situation that |¢g),|Tg) € S™.

To be precise, define for the faultless quantum compu-
tation

pr 2 W) (W] = Up [e—1) (1| U]

for times t = 1,2,...,7. Let X, £ UU,_;---U; be
shorthand notation such that p; = tiOXtT. For the
possibly faulty quantum computation, define

o 2| W) (Uy| = AU |Wy1) (U1 | UFA]

for times ¢t = 1,2,...,7, respectively. Introduce also
the shorthand notation Y; £ AU Ay—1Us—1 - - - A U7 such
that oy = YtUon. The analysis in this paper can im-
mediately be extended to the case where errors (also)
precede the gate. The error accumulation process is also
illustrated in Figure

C. Distance measures for quantum errors

The error can be quantified by any measure of distance
between the faultless quantum-mechanical state p; and
the possibly faulty quantum-mechanical state o; for steps
t =0,1,...,7. For example, we can use the fidelity

pit/204p /2 [1, or the Schatten p-norm [38]
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FIG. 1. Schematic depiction of the coupled quantum mechan-
ical states p: and ot for times ¢ = 0,1,--- ,7. a) Faultless
computation. The state p; is calculated based on a gate
sequence Uy = {Un,...,U;} from the initial state po. b) Poten-
tially faulty computation. The state o is calculated using the
same gate sequence Uy = {U1,...,U:} and an additional error
sequence & = {A1,...,A:}. The final state o, can depart
from the faultless state p, because of errors.

defined by

Dy £ |loy — pullp = %TY[{(Ut — pe) (o0 — Pt)}i} ’

for any p € [1,00). The Schatten p—norm reduces to the
trace distance for p = 1, the Frobenius norm for p = 2,
and the spectral norm for p = co. In the case of one qubit,
the trace distance between quantum-mechanical states
p: and oy equals half of the Euclidean distance between
pt and o; when representing them on the Bloch sphere
1. It is well known that the trace distance is invariant
under unitary transformations [1]; a fact that we leverage
in Section [[IIl

Aoy = I®n7 A2Us

FIG. 2. Coupled chain describing the quantum circuit with
errors. In this depiction, we start from the same initial state
for simplicity. Here an error Az # I®™ occurs as the third
gate is applied. Note that the coupled chain p¢, o+ separates.

In this paper, we are going to analyze the statistical
properties of some arbitrary distance measure (one may
choose) between the quantum mechanical states p; and
oy for times t = 0,1, ..., 7. For illustration, we will state
the results in terms of the Schatten p—norm, and so are



after its expectation E[D;], as well as its distributions
P[D; < ¢], Plmaxg<s<: Ds < 0]. As we show in in
case of the trace distance (p = 1), these probabilities can
then be related to the corresponding probabilities for the
fidelity:

Lemma 1. With p = 1, it holds that P[F; > 1 —¢] >
P[D; <¢] for all t > 0. Furthermore,

P[min Fs; > 1—¢] > P[max Dy <¢l.
0<s<t 0<s<t

III. ERROR ACCUMULATION

A. Discrete, random error accumulation
(multi-qubit case)

Following the model described in Section [T and illus-
trated in Figure [T] and Figure 2] we define the gate pairs
Zy & (X;,Y;) fort = 1,2,...,7, and suppose that Zy = 2o
is given a priori. Note that if one assumes py = 09, then
20 = (I®™, %),

1. The case of random circuits

We consider first the scenario that each next gate is
selected randomly and independently from everything
but the last system state. This assumption is satisfied in
e.g. the randomized benchmarking protocol [12H22]. The
probabilities P, [D; > §] and P, [maxo<s<¢ Ds < d] can
then be calculated once the initial states |¢), |¥o) and
the transition matriz are known.

Let the transition matrix of the Markov chain {Z;},>¢
be denoted element-wise by P, ,, L2 P[Zi11 = w|Z; = 2]
for 2 = (x,y),w = (u,v) € G2. The transition matrix

satisfies P € [0, 1]|g"|2><|g”"2 and the elements of each of
its rows sum to one. Let
Pz((f?w 2 P[Zy = w|Zo = 20] = (P) 2,0 (1)

stand in for the probability that the process is at state
w at time ¢ starting from Zy = zy. Note that the second
equality follows from the Markov property [23].

Ezample 1: Consider the situation that the error de-
pends on the last gate. The transition probability P, ,,
for z = (z,y),w = (u,v) € G2 can then be calculated as
follows. For the faultless computation, a gate U = ux ™!
that transfers the density matrix xpoxT to upouJr is ran-
domly chosen according to a gate probability vector k.
For the possibly faulty computation, an error that trans-
fers the density matrix yooy' to voguf, after the gate
U=uz"1is A =vy lzu=t. Let (A = vy lozu"t|uz™1t)
denote the probability that the error A = vy~ 'zu~! oc-
curs given that the gate U = uz~! just occurred. The
transition matrix then satisfies P[Z;11 = w|Z; = 2| =
k(U = uz™H((A = vy~ tou~tuzr 1) component-wise.

Example 2: If we assume that errors and gates are inde-
pendently generated, then the transition matrix satisfies
PZiy1 = w|Zy = 2] = k(U = uz™')(A = vy~ tout)
component-wise.

We are now after the probability that the distance Dy
is larger than a threshold §. We define thereto the set of
0-bad gate pairs by

w
Byl s 2 {(x,y) € 62| |lzport — yooy'll, > 5} (2)

for |to), |¥o) € 8™, > 0, as well as the hitting time of
any set A C G,2 by

T4 2 inf{t >0|Z, € A} (3)

with the convention that inf¢ = oco. Note that T4 €
Np U {oo} and that it is random. With definitions (2)),
(3), we have the convenient representation

P, [max Ds; < 4] =1—P, [max D, > J]
0<s<t 0<s<t

<] (4)
).

for this homogeneous Markov chain. As a consequence
of , the analysis comes down to an analysis of the
hitting time distribution for this coupled Markov chain
(Figure [3)).

Dy

T [%o)
Biyo).s

FIG. 3. Schematic diagram of the hitting time Tyiwoy -
\

%0),8
Define the matrix B“j()“;(s € [0,1]191 %1921 element-
wise by
. v
By s P 1w # B 5 (5)
I¥0),6/ 2w 0 otherwise.

Let the initial state vector be denoted by e, a |G,|* x 1
vector with just the zp-th element 1 and the others 0.
Also let 14 denote the |G, |? x 1 vector with ones in every
coordinate corresponding to an element in the set A. Fi-

nally, we define a |G, |* x 1 vector dIiSi = (Jlzpoz’ —

vo0'll) )
norm distances. We now state our first result:

cg? enumerating all possible Schatten p-



Proposition 2 (Error accumulation in random circuits).
For any z0 € G2, 6 >0,t=0,1,...,7 < 0o: the distribu-
tion of error is given by

P.o[Dy > 8] = el Pl gug) (6)

1%0),8
and is nonincreasing in 6. Similarly, the expected error
is given by B, [Dy] = e};Ptd}igg. Furthermore; if zo €

BJES;(;; the distribution of mazximum error is given by

Pz [Orgsa%{t D, > 4] (7)

t
=3l (B“j§>>76)s_1 (P— Bl'j(f;,a)lgw :
s=1

I%0),6

and otherwise it equals one. Lastly, s monincreasing
in 0, and nondecreasing in t.

The probability in is a more stringent error measure
than e.g. @ is. The event {maxg<s<¢ Ds < d} implies
after all that the error D; has always been below the
threshold § up to and including at time ¢. The expected
error E, [D;] and distribution P, [D; > §] only concern
the error at time ¢t. Additionally, allows us to calculate
the maximum number of gates that can be performed.
That is, P,,[maxo<s<¢ Ds > 0] < v as long as

<th & <~
t<t;, Snel%i{ﬂﬂ’go [Orggéct D, >0 < ’y} (8)

In words: at most tgﬁ gates can be applied before an accu-
mulated error of size at least § occurred with probability
at least ~.

Proof of @ It follows from , mutual exclusivity, and
that

P.,[D, > 0] =P.,[Z € B]}") ]

= Z P, [Z; = w] = Z (P") 2,

[¥o) [¥0)
wEBh/Jo),S wGBWO%é

The right-hand side equals @ in matrix notation. To ob-
tain the expression for the expectation, directly apply the
definition of expectation for a discrete random variable:

]EZO [Dt] = Z proxT - yUOyT”Pon [Zt = (xay>]'
(=,y)€G3

Using (1)) and the definition of d:i’g; , this gives the result.
Proof of [@). If zo € Bl‘:f;’i(;, then P, [T, w0

B\wo)ﬁ

=0 =1.1If
20 & Bllz(?;ﬁ’ then use to write

Follazy, =

_ o) o) o)
=Pe[2 € By 5 2ot € Biyjg0 Zs € Biyyy il

= > > NP Zi=2,..., 2 = 2]

2agB0) o 2 @80 5 za€BlY)
_ T (nl%o) \s—1 [Po)
= €20 (Blygys) (P = Biyis)lgive 9)

[%0),6
in matrix notation. The result follows after summing @[)
for s =0,1,...,t — 1 by mutual exclusivity.

Note finally that for arbitrary ds > &1, we have that

Bl‘js; 5, © B“i}g; 5, As a consequence,
]on [TB\‘I’m < t] < ]on [TBI‘P()) < t}
|%0).d2 [¥0),01

This establishes that P, [T)v,)
l¥g),6
0. By positivity of the summands, P, [TB\\;/(,)
[0),8
nondecreasing in t. O

< t] is nonincreasing in

< t] is

For general B‘ll‘f:; 5> the explicit calculation of can
be numerically intensive. It is however possible to provide
a lower bound of lower numerical complexity via the

expected hitting time of the set Bl‘i’;’; PE

Lemma 3 (Lower bound for random circuits). For any
set A C G2, the expected hitting times of a homoge-
neous Markov chain are the solutions to the linear sys-
tem of equations E,[T4] = 0 for z € A, E,[T4] =
1+ ngA P, wEy[T4] for z & A. Furthermore; for any
20€G2,8>0,t=0,1,...,7 < oo:

B Mo
> - o )
P., | max D, >8] > 0V (1 P ) (10)

Here a vV b = max{a,b}.
As a consequence of Lemma

T

. > >
P, [01;1?; D; > 6] >~ when t > T

and in particular
P., [Orggéct D;>0] >0 when ¢t > E, [TB:;I:(?))YO}.

The values in the right-hand sides are thus upper bounds
to the number of gates 5 one can apply before ¢ error
has occurred with probability ~:

E,|T
ol Bl‘v\f{?;,o] _ 1)
L=~
for § > 0,7 € [0,1]. Here, a A b = min{a, b}.
Proof of . The first part is a standard result, see
e.g. [39, p. 202]. The second part follows from Markov’s
inequality, i.e.,

tx  <E, [T, vy /\(
by S Baol BJSW]

E., [TB;\;O>> ]
s = < — Wero
P., [012?;2 D, <4 =P, [TBleS?,s >4 < s
That is it. -



2. The case of nonrandom circuits

Suppose that the gate sequence U, = {Uq,...,U,} is

fixed a priori and that it is not generated randomly.

Because the gate sequence is nonrandom, we have now
that the faultless state p; = tioX;r is deterministic for
times t = 0,1,...,7. On the other hand the potentially
faulty state o, = Y;poY; is still (possibly) random.

We can now use a lower dimensional Markov chain to
represent the system. To be precise: we will now describe

the process {0 }+>0 as an inhomogeneous Markov chain.

Its transition matrices will now be time-dependent and
given element-wise by Q, ,(t) = Ploy1 = vpovtloy =
ypoy'] for y,v € Gn,t € {0,1,...,7 — 1}. Letting Qz(fz, =
Plo; = vpovtlog = ypoy'] stand in for the probability
that the process is at state vpov! at time ¢ starting from
oo = ypoy', we have by the Markov property [23] that

t

Q= ([lQw),, for yved. a1

s=1

Ezample 3: Consider the situation that the probability
that an error occurs depends on which gate was applied
last. If we assume that P[A;11 = AY; = y] = (v, (N)
are given distributions for y € G,,, t € {0,1,--- ,7—1
on \ € G, we can alternatively write the elements of the
transition matrices as

Qyu(t) = PYiy1 = v]Y; = 9]

= Y PV =0|Yi =y, Ay = AIP[Ary1 = A[Y; = ]
AEG,

= Z ]1[)\Ut+1ypoyTUtT+1)\T = vpov']¢y,v, 1 (V)
AEG,

Here, we have used the law of total probability.

Ezxzample 4: If errors occur independently and with
probability P[Ay1 = A] = ((A), then Qy.(t) =
S neq, VAUt 1ypoy Ui AT = vpovtI¢(A).

Now define the sets of (,t)-bad gate pairs by B Vs
{z € Up|llps — zooal|, > 6} for |1ho),[We) € S 1
it
5

’té

m m

{0,1,...,7}, § > 0. Also define the matrices B“ °>>
[0, 1]|g”|x|g"| element-wise by
[Wo),t Qy,v(t) if v € B:i(? s
(Blu)5) .o »e (12)
0 otherwise,

fort =0,1,...,7. Recall the notation introduced above
Proposition [2} Similarly enumerate in the vector d,, the
Schatten p-norms between any of the possibles states of
o¢ and the faultless state p;. We state our second result:

Proposition 4 (Error accumulation in nonrandom cir-
cuits). For any yo € Gn, 6§ >0,t=0,1,...,7 < oc0: the

distribution of error is given by

HQ
Similarly, the expected error is given by E, [D;] =

t
ego( [T Q(k))d,,. Furthermore; if yo ¢ Bl% , the dis-
k=1

tribution of maximum error is given by

]P)yo [Dt > 5 = 6 B\\I/O) e (13)

[%0),

t—1

Py, [max Dy > 0] = Z( e HB'% (14)

X (Q(S =+ 1) B|‘:/IJJO>> S+1)18\\1’D> s+1>

[¥0),8

and otherwise it equals one.

Proof of . From Bl% t’s definition and mutual exclu-
sivity it follows immcdlatcly that

v
Py, [Dy > 6] =Py, [V; € B||¢O) 5] = Z Py, Y = v]
veBlro) !
[¥0),8

(15)
for |1o), |Po) € 8™, 8 > 0. Using and continuing
from (5], we obtain

Py[De> 0= > ey ([TQ®

o)t kel
VEB| L) 5

This simplifies to in matrix notation. To obtain the
expression for the expectation, apply the same arguments
as were used for Proposition [2| but use instead.
Proof of . We can again explicitly calculate the result
using a hitting time analysis, but the expressions expand
due to the time-dependency of B‘lq‘f;);”;. If yog € Bl‘jg;”;),
then Py, [maxo<,<s Dy > 6] = 1. Otherwise

By, [{, max | D, <6} {Dy > o} (16)
[Wo),1 [Wo),s—1 |‘I’
=Py Y1 € Bjyyso o Ysor € B1y005 Vs € By, O 5]
— Z Z IP’yO[leyl,...,YS:ys}
ngB Ly vs€B O]
s—1
_ Z . Z Z H Qy7.,yrr+1 (7‘)
nEBLS  vea B0 veenl o)) 0

Recalling (12)), we can equivalently write in matrix
notation as

<
Py, [{, ax | Dy < 0} N{Ds > 0}] (17)
s—1
_ [To),r [To),s
T (H Byo},s ) (Qs) - Biyoys )1 B
r=1 ’
Summing over s =0,1,...,t—1 completes the proof

by mutual exclusivity. O



3. State space reduction in stabilizer circuits

The set of stabilizer gates [40] for a state |¢) is de-
fined as the set of gates M € G, \ I®" that satisfy
M p) = €™ |¢) for some v € R. Since €' is a global
phase that cannot be observed, M [¢) = €7 |¢)) can also
be understood as part of an equivalence class M |¢) = |¢).
The state |¢p) in M |¢) = |¢) is called the stabilizer
state [41]. For one qubit and in case of the Pauli group,
examples include |0), |1), and |+) = (1/2)(]0) & |1)). Re-
mark [5| shows that there exist 2" stabilizer states for any
gate M € G, \ I®". Tts proof is relegated to

Remark 5. For any gate M € G, \ I®™ there are 2™
states |1bo) that satisfy M |to) = e |1bg) for some v € R.

The advantage of starting a quantum circuit from a sta-
bilizer state is that the state space is smaller. It moreover
can be proved that, under the assumptions of Section [I]
when starting initially from a stabilizer state, all states
reached during the quantum computation will themselves
be stabilizer states. Define the set of reachable density
matrices from an initial state 1)) € 8™, by

Rio) = {g1th0) |g € Gn}- (18)

The exact number of reachable states can be calculated by
the method in §F] Taking the Clifford group gates on two
qubits as an example, the number of gates |Co| = 11520.
However, there are just 60 reachable states if the initial
state is [00). The proof of Remark [f] can be found in

Remark 6. Given a gate M € G,\I®" and a state [1)g) €
Sy such that M |1g) = e |1hg) for some v € R, then for
any state 1) € Ry, there exists an H € G, \ I®™ such
that H |1h1) = € [1h1).

A consequence of Remark [0] is namely that for any
reachable state |¥) there are at least two different gates
M, M; € G, whose corresponding states M; |¢g) and
M |¢o) are equivalent (up to a phase) to same state |¥),
since M; |1o) = M |o) = |P) if we let |T) = M, [¢o)
and M; = HM;. The number of reachable states |R|y,)|
is thus upper bounded by 1/2|G,| when starting from a
stabilizer state.

B. Continuous, random error accumulation
(one-qubit case)

In this section, we analyze the case where a single qubit:

1. receives a random perturbation on the Bloch sphere
after each s-th unitary gate according to a continu-
ous distribution ps(«), and

2. depolarizes to the completely depolarized state I/2
with probability ¢ € [0,1] after each unitary gate,

by considering it an absorbing random walk on the Bloch
sphere. The key point leveraged here is that the trace
distance is invariant under rotations. Hence a sufficiently
symmetric random walk distribution will give the error
probabilities.

a. Model. Let Ry be an initial point on the Bloch
sphere. Every time a unitary quantum gate is applied, the
qubit is rotated and receives a small perturbation. This
results in a random walk {R:},-, on the Bloch sphere
for as long as the qubit has not depolarized. Because
the trace distance is invariant under rotations and since
the rotations are applied both to p; and o, we can ig-
nore the rotations. We let v denote the random time at
which the qubit depolarizes. With the usual independence
assumptions, v ~ Geometric(g).

Define p(r) for t < v as the probability that the ran-
dom walk is in a solid angle © about r (in spherical coor-
dinates) conditional on the qubit not having depolarized
yet. That is,

PR, € Slv > 1] 2 /Sut(r)dQ(r).

We assume without loss of generality that Ry = 2.
From [24], the initial distribution is then given by

— 2n+1
to = Z TPn(cos 0).
n=0

Here, the P,(-) denote the Legendre polynomials. Also
introduce the shorthand notation

m_n/

In particular: if p;(a) = §(«) for all ¢ > 0, then A, ; =
(Pn(cosa))t. From [24], it follows that after ¢ unitary
quantum gates have been applied without depolarization
having occurred,

(cosa)dps ().

oo
2n+1
e = ,LZ::O g Ay Py (cos6). (19)
b. Results. In this section we specify D; as the trace

distance. We are now in position to state our findings:

Proposition 7 (Single qubit). For 0 < § <1, t € N,
the expected trace distance satisfies

= A
E[D]=1—(1- t(l 2 ¢ ) 20
The distribution of the trace distance is given by

[0.6]1(1—(1-9))+ (21)
n+1

1—qt§:2n—|—l Z gz, (Tl
o nt r— 2(7'_1) .

P[D, <6l =1[5 €



Here, the C, denote the Catalan numbersﬂ Finally; the
distribution of mazimum trace distance is lower bounded

by

]P’[Orgax D, <y >t] > (22)
_ 2 ' (1,71) _ 2
0v(1 t+6 ;;)211“ noggy PV -2 )).

Proof of . By the law of total expectation, we have
E[Dy] = E[D:|v > t|P[v > t] + E[Dy]v < t|P[v < ¢].

Since v ~ Geometric(q), we have that

(1—q).

Note additionally that D; = 1/2 whenever t > v. There-
fore

Pv>t|=1-Pv <t]=

E[Dy) = E[Dy|v > #)(1 — q)' + (1 — (1 - g)")
=Ly (E[Dift <v] - 1)1 - ).

We now calculate E[D;|v > t] using and the Bloch
sphere representation:

E[D,|v > t]
— 2n+1 T 0
= Z%Ant/ 27 sin 0 sin — P (cos6)dd
n=0
2 1 1-
Z “ A P (23)

Also recall two facts about the Legendre polynomials: the
recurrence relation in [42] states that

1

Pul@) = 5 =

(P'r/H—l( ) — sz 1(3«"))7 (24)

and Rodrigues formula [43], (8.6.18)] states that

1 4d»
2nn! dxn

Po(z) = (2 -1)". (25)

Using , , and integration by parts, we then obtain

/ l_x (26)

P, 1() Pn—l(x)
2n+1( /12\/;—7295 vt ,lzmdx>'

2 Alternative forms include:
P[Dy <8lv > ] = 623200 ((2n+1)An, t‘zFl( n,n+1,2;62), and

P[Dy <5lv > 1] =6230° (2n+1)An, (2) (1—262) with
2F (a, b, c; z) the Hypergeometric function, () the Pochhammer

symbol, and P,(LQ’B)(Q:) the Jacobi polynomials.

We have by [44], (12.4)] that the generating function of
the Legendre polynomials is given by

Z Em \/1 - 21a:s + 52 27

Based on with ¢ = 1 and the orthogonality of Legen-
dre polynomials,

Pu(z) Y Pn(x)dz (28)

:Z/ Po() P () dz = —2

1 2TL+1

Here, we have used Lebesgue’s dominated convergence
theorem with |P,(z)| < 1 Vn. Therefore, continuing from

([23) using (26) and (28),
= 2n+1 ! P, i1(x)
E[Di|lv > t] = 7/\”(—/71‘
D> 1= 32 25 (- [ ot
1
P,
+/ s 1(2) dx)
12V2 =2

7% n+1A —4
T2 M En-1)@n+1)(2n+3)

Simplifying gives the result.
Proof of . Similar to above we have by the law of
total probability that

Pla < Dy <b] =Pla < D; < by <t|P[w < {]

+Pla < Dy < blv > t|P[v > t],

and we note now that Pla < D; < by < ¢]
Therefore

= ]1[% € [a, b]].

Pla < Dy <b] =1[2 € [a,b]](1 — (1 — ¢))
+Pla < Dy < blv > t](1—q)".

We now calculate Pla < D; < blv > t]; again using
. Let 0 < a < b < 1. From the equivalence of the
events

{a <D; < b} = {2 arcsin(a) < ©; < 2arcsin(b)},

where O; denotes the polar angle of Ry, it follows that

Pla< Dy <b]=(1—(1-¢q)")1[} € [a,b]] (29)
2 1 2 arcsin b
+ (1 —q)* Z nt At 27 sin O P, (cos 0)d6.
— Ar 2arcsina
n=0
Now let 0 < § < 1. Continuing from ., since

cos(2arcsin §) = 1—242 for § € [0, 1] and letting cos 6 = z,

P[D; < v > 1]



[*'s) 2 1 2 arcsin §
— Z nt Ay 27 sin O P, (cos 0)dé
= 47
o +1 !
- A / P, (x)dz.
= 2 1-262

By the explicit representation of Rodrigues’ formula [43)]
(8.6.18)],

= 2n+1 1 "\ (n+k\ sz —1\F
S [ S () )

> "\ (nAk\ (—1D)F
=S " (2n+1)A, AL 520k,
;(”J’) té(k)( k )k+16

Finally, let » = k + 1, such that

e’} n+1 r—1
n n+r—1\(-1) 9
=N (2n+ DA ) s
Senenn > () (1)
[e%} n+1
+r—-1
=S @n+1)A —nrtgzre (" .
S Cn s S ()

Proof of . This follows directly after applying De
Morgan’s law and Boole’s inequality, i.e.,

B

P[max D, < v > t] = ]P’[
0<s<t

{DS < 5}‘1/ > t}

s=0

~2[(J12. 2 ) > =1 #[Utn. > ) >

t t
>1-) PD,>dy>t=1-t+» P[D, <dlv>1
s=0 s=0

That is it. O

IV. SIMULATIONS

A. Error accumulation in randomized
benchmarking

We now consider error accumulation in single-qubit
randomized benchmarking. In each randomized bench-
marking simulation experiment, the initial state is set to
|1) and subsequently 7 — 1 gates are selected one by one
from the Clifford group C; uniformly at random. Finally,
based on the experimental setup in [12], we add a 7-th
gate that transfers the state to |0) in the absence of errors.
For simplicity we specify p = 1 and thus discuss the trace
distance throughout this section.

1. Pauli and Clifford channel errors

We consider two kinds of error models: Pauli channels
and Clifford channels. For the Pauli channel model, let
the probability that no noise occurs be P(A=1)=1—r,
and the probabilities of every noise type occurring be
PA=X)=PA=Y)=PA =2) =r/3, where r €
[0,1]. For the Clifford channel model, let the probability
of no noise occurring be P(A = I) = 1 — r, and the
probabilities of every other gate type occurring equal
r/23. In Figure [4] the parameter r is set to 1/100. T'wo
error thresholds 0 are considered: ¢ = 1/10 (a, ¢, and
d) and § = 1/5 (b). The insets show the influence of
parameter 7 on the probability of error in @ and the
probability of maximum error in at time t = 100. The
results in Figure [4] illustrate the theoretical results for
the probability of error @, the expectation of the trace
distance, and the probability of maximum error (7)), and
their validity is supported by these simulations. Figure
also illustrates that different error models lead to different
error accumulation behaviors.

—— Sample curve for Pauli channel
Experiment results for Pauli channel
—— Theory results for Pauli channel

—— Sample curve for Clifford channel
Experiment results for Clifford channel
Theory results for Clifford channel

a b |
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FIG. 4. The error accumulation based on Pauli and Clifford
channels in randomized benchmarking. T'wo error thresholds §
are considered, § = 1/10 (figures a, ¢, d) and 6 = 1/5 (figure b).
The simulation results are calculated from 1000 independent
randomized benchmarking experiments.

Influence of the initial state on Pauli error accumulation

In this section we consider the influence of the initial
state on Pauli error accumulation. We ignore the last gate
of randomized benchmarking for simplicity. Each gate is
selected one by one from the Pauli group uniformly at
random. The error model described above is considered
again and the parameter r is set to 1/5.



Figure [5| shows the state transition diagram for two
different initial states: |(p) = /7/10|0) + 4/3/10|1) and
|€0) = 4/4/5|0) + /1/5]1). The bad state pairs that
constitute B:gg; 5 and BES; & which have a trace distance
over 0 = 1/5, are indicated in red. Note that the number
of bad state pairs can be affected by the choice of initial
state. Figure [6] shows the probability of maximum error
in @ and the maximum number of tolerant gates in
for the same two different initial states: |(p) (upper)
and [&) (bottom). Figure [5] and Figure [f] illustrate too
that the choice of initial state can affect the probability
Plmaxg<s<¢ Ds > 0] and the maximum number of tolerant
gates ¢5 . Finally, when starting from the initial state
o), in this simple case, (7)) reduces to

1 (1_2.\¢
P[Orgsa%ctDs>l/5]—l (1-2r),

while when starting from the initial state |£y) we have

1 (1t
P[Org?%(tDs>1/5]—l (I—mr).

~ o1
r = = o
™ @ iy )
“ f; e Q 5.
W3 | @ S R
On O O '8}
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€ “2 ®] "2

40 ﬂD

FIG. 5. State transition diagram for different initial states:

[Co) (left) and |&) (right), and the error threshold § = 1/5.
The red nodes show the bad state pairs in Bf§§§,5 and B“ggi,é,
respectively, in which the trace distances are larger than §.

B. Error accumulation in nonrandom circuits

Here we illustrate error accumulation rates in two non-
random circuits. One is a periodical single-qubit circuit
that repeats a Hadamard, Pauli-X, Pauli-Y and Pauli-Z
gate k = 25 times. Another is the periodical two-qubit
circuit shown in Figure [7] repeated k = 5 times. Here
the controlled-NOT gate

1000
cwm:(gggg).
0010

We also consider here an error model in which the errors
are independent from the gates. The error model in the
single-qubit circuit is as follows:

P(A = I) = 0.990, P(A = Z) = 0.010.

The error model in the two-qubit circuit, when labeling
the qubits by A and B, is chosen as:

P(Ay = 1) =0.990, P(As = X) = 0.006,

0<s<t

Plmax D, <0.2]

P[ﬂrggDsso.z
NS

oy

FIG. 6. Pauli channel error accumulation on single-qubit
randomized benchmarking when starting from different initial
states: |Co) (top) and |£o) (bottom). The error threshold is
set to 0 = 1/5.

P(As =Y) =0.003, P(As = Z) = 0.001,
P(Ag = I) =0.980, P(Ap = X) = 0.002,
P(Ap =Y) =0.014, P(Ag = Z) = 0.004.

The error threshold is set to 6 = 1/10. The theoretical
and simulation results on the two circuits are shown in
Figure[7] Note that the simulation curves almost coincide
with the theoretical curves; the deviation is only due to
numerical limits. From a computational point of view, the
theoretical results take only about 1% of the running time
of the simulation results which are calculated from 2000
independent repetitions. This shows that our theoretical
method can actually give more accurate results with less
computing effort. However, we expect available memory
to be the primary constraining factor when numerically
implementing our formulae. Note also that because differ-
ent gates influence error accumulation to different degrees,
the periodical ladder-like behavior occurs in Figure [7}

C. Continuous, random error accumulation in a
single qubit

We now simulate the accumulation of continuous errors
without depolarization (¢ = 0) in a single qubit. Here, the
noise is assumed to lead to a random walk on the Bloch
sphere that takes steps of a fixed angle & = 1/10, and
therefore P;(a) = 6(«). The threshold § is set to be 1/10.
The theoretical mean trace distance E[D;] and probabil-
ity P[D; < 4] are calculated using and (21). The
theoretical results and simulations are shown in Figure



repeat k times

repeat k times

A=10) Illlll

—— Theoretical mean trace distance E[Dy]
——— Theoretical probability P[D, <0.1]
Theoretical probability P[mag(/ D, <0.1]
0=s<

Experimental mean trace distance E[D;]

Experimental probability P[D; < 0.1]
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FIG. 7. Theoretical and simulation results for error accumu-
lation on a single-qubit circuit (left) and a two-qubit circuit
(right). The numerical results are calculated from 2000 inde-
pendent runs, and almost indistinguishable from the formulae.

—— Experimental probability P[D; <0.1]
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FIG. 8. Continuous error accumulation in one qubit. The
numerical results are from 2000 independent runs of our simu-
lation.

V. FAULT-TOLERANT QUANTUM CIRCUIT
OPTIMIZATION

The rate at which errors accumulate may be different
for different quantum circuits that can implement the
same algorithm. Using techniques from optimization and
, we can therefore search for the quantum circuit that
has the lowest error rate accumulation while maintaining
the same final state. To see this, suppose we are given
a circuit U, = {U1,Us,...,U;}. For given pg this brings
the quantum state to some quantum state p,. Other
circuits may go to the same final state and have a lower
probability of error at time 7. We will therefore aim to

dnggg, GG (30)
subject to G,.---Gy =U,---Uj.

Here, one can for example choose for the objective func-
tion u(-) the probability of error , or probability of
maximum error . To solve , we design a simulated
annealing algorithm to improve the quantum circuit.

11
A. Simulated annealing
We will generate candidate circuits as follows. Let
(G, ... Gl

denote the circuit at iteration 7. Choose an index I €
[T — 1] uniformly at random, choose G € G uniformly at
random. Then set

G ifi=1,
aimt =L aeaglall | iti =141,
GEW] otherwise.

Let
E:{{G17"'7GT}|GT"'G1:UT"'Ul}

denote the set of all viable circuits. For two arbitrary
circuits 4,5 € F, let

T—1

A(Z,]) £ Zﬂ[is 7é js:is-‘rl 7’é js-‘rl]
s=1

denote the number of consecutive gates that differ between
both circuits. Under this construction, the candidate-
generator matriz is given by

; \
o — ) (r=1)|g]
qij 0

We will use the Metropolis algorithm. Since the candidate-
generator matrix is symmetric, this algorithm means that
we set

if A(d,5) <1

otherwise.

a; ;(T) = exp (—% max {0, u(j) — u(z)})

as the acceptance probability of circuit j over ¢. Here
T € (0,00) is a positive constant. Finally, we need a
cooling schedule. Let

WE sup
{i,j€B|A(,5)<1}

{UG) - U@}

Based on [23], if we choose a cooling schedule {75, },>0
that satisfies

7>
Inn

then the Metropolis algorithm will converge to the set of
global minima of the minimization problem in .

Lemma 8. Algorithm[1] converges to the global minimizer
of whenever T, > TM /Inn forn=1,2,....



Input: A group G, a circuit {Uy, ..
iterations w

Output: A revised circuit {G[lw], ce G[Tw]}

begin

Initialize {G[lol, e, G[ro]} ={U,...,U:};

for n < 1 to w do

Choose I € [T — 1] uniformly at random;

Choose G € G uniformly at random;
Set Jr =G, Jr41 = GFG[I”]]G[I”]_‘]J, J; = G,[Ln] Vi¢1’1+1;
Choose X € [0, 1] uniformly at random;
if X <oagm ;(Ty) then
‘ Set GIntl = J;
else
‘ Set G+l = gl
end

.,Ur}, and number of

end

end

Algorithm 1: Pseudo-code for the simulated
annealing algorithm described in Section [V}-A.

B. Examples
1. Gate-dependent error model

We are going to improve the one-qubit circuit in Fig-
ure [7] using Algorithm [II The gates are limited to the
Clifford group C; and the errors will be limited to the
Pauli channel. The error probabilities considered here
are gate-dependent and can be found in §E| The cooling
schedule used here will be set as T,, = C/In(n + 1), and
the algorithm’s result when using C' = 0.004 is shown in
Figure [0] Figure [J]illustrates that the improved circuit
can indeed lower the error accumulation rate. The circuit

with the lowest error accumulation rate that was found is
shown in §H]

The P[max D, > 0.1] versus iteration 7) for (C=0.004)

0<s<100

The P[n<1a<x D, < 0.1] of the initial circuit
0<s<t

The P[ma<xt D, < 0.1] of the improved circuit
0<s<
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FIG. 9. Circuit optimization when using Algorithm [I| The er-
ror probabilities are gate-dependent. Note that the probability
of maximum error decreases as the number of iterations
71 increases when using Algorithm [1| (C' = 0.004). Here we
started from the one-qubit circuit in Figure [7]
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2. Gates in a subset of one group

The gates that are available in practice may be re-
stricted to some subset A C G. Under such con-
straint, we could generate candidate circuits as fol-
lows: Let {G[ln]7...,G[Tn]} denote the circuit at itera-
tion 7. In each iteration, two neighboring gates will
be considered to be replaced by two other neighboring
gates. There are m < (7 — 1) neighboring gate pairs
(G[ln], G[;])7 e (GEZ]A, GLZ]) that can be replaced by two
different neighboring gates. Choose an index I € [m — 1]

uniformly at random, and replace (G[I"], G[;ﬂ]rl) by any gate

pair from {(él,ég) € A% | G[In]G[In_;_l = élég} uniformly
at random. Pseudo-code for this modified algorithm can
be found in §G] It must be noted that this algorithm is
not guaranteed to converge to the global minimizer of
(B0) (due to limiting the gates available); however, it may
still find use in practical scenarios where one only has
access to a restricted set of gates.

We now aim to decrease the probability of maximum
error ([14)) by changing the two-qubit circuit shown in
Figure [/l The error model is the same as that in Sec-
tion [[V}-B. The set of gates available for improving the
circuit is here limited to {I, X,Y, Z, H,CNOT}. The re-
sult here for the two-qubit circuit is obtained by again
using the cooling schedule T;, = C/In(n+ 1) but now
letting the parameter C' = 0.002. Figure [10| shows that
a more error-tolerant circuit can indeed be found using

this simulated annealing algorithm. The improved circuit
is shown in §H]

——— The P[n<1a<x Dy > 0.1] versus iteration 1) for (C=0.002)
0<5<50

—— The P[n<1a<xt Dy < 0.1] of the initial circuit
0=s<

——— The P[n<1a<xt D < 0.1] of the improved circuit
0=s<
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FIG. 10. Circuit optimization when using Algorithm[2] The set
of gates available is chosen limited to {I, X,Y, Z, H,CNOT}.
Note that the probability of maximum error decreases as
the number of iterations 7 increases when using Algorithm
(C =0.002). Here we started from the two-qubit circuit shown
in Figure [7}



VI. CONCLUSION

In conclusion; we have proposed and studied a model for
discrete Markovian error accumulation in a multi-qubit
quantum computation, as well as a model describing
continuous errors accumulating in a single qubit. By
modeling the quantum computation with and without
errors as two coupled Markov chains, we were able to
capture a weak form of time-dependency, allow for fairly
generic error distributions, and describe multi-qubit sys-
tems. Furthermore, by using techniques from discrete
probability theory, we could calculate the probability that
error measures such as the fidelity and trace distance
exceed a threshold analytically. To combat the numerical
challenge that may occur when evaluating our expressions,
we additionally provided an analytical bound on the error
probabilities that is of lower numerical complexity, and
we also discussed the state space reduction that occurs
for stabilizer circuits. Finally, we showed how our expres-
sions can be used to decide how many gates one can apply
before too many errors accumulate with high probability,
and how one can lower the rate of error accumulation in
existing circuits by using techniques from optimization.

The bridging of techniques from probability theory and
operations research to the domain of quantum comput-
ing is novel and presents a new area of research. This
paper lay down a foundation for one error accumulation
model, and multiple interesting follow-up topics can now
be investigated as future research. Here, we provide four
intriguing ideas:

— The accumulation of errors when using a universal gate
set would need to be modeled using stochastic processes
that live on infinite state spaces. Such an approach looks
to be connected to the modeling of random walks on

13

manifolds. This would be a challenging, intriguing, and
important next step for the analysis of error accumulation
in quantum circuits.

— The expressions in @ and are, essentially, gener-
alized forms of a geometric distribution. For particular
groups and error models, it may be that this expression is
well-approximated by a standard geometric distribution
(which would be of substantially lower numerical com-
plexity). It would be interesting to investigate whether a
reduction of (7)) and occurs, or whether an approxi-
mation can be found, for particular quantum systems.

— With that idea in mind, note that the hitting time of the

set B:j&{ 5
size of the group G,. As the number of qubits increases,
both of these sets grow in size. Investigating the growth
relation between these two sets for particular groups via
e.g. techniques from analytical combinatorics [45] may
reveal an asymptotic distributional law for the errors in
quantum computations with many qubits.

— The availability of an analytical expression for the accu-
mulation of errors allows us to proceed with second-tier
optimization methods. For example, any quantum com-
puter architecture would, to achieve practical quantum
computing in the near future, have some classical con-
trol mechanism that routinely takes operational decisions:
which gate do we apply next, do we now apply an error
correction procedure, etc. Each of these different opera-
tions has its own cost associated with it, e.g. in the form of
classical compute time or the loss of ancillary qubits. Us-
ing techniques from decision theory [46], we can weigh the
long-term effects of different operations through the avail-
able analytical expressions, and we could overall achieve
more efficient computations in the future. Essentially, we
could then compute more with fewer qubits.

is naturally related to its size relative to the
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Appendix A: C, is a group

The fact that C, is a group can be varified by checking the two necessary properties: (i) I®" € C, because it is

unitary and I®"o(I®")t = ¢. (ii) Suppose C € C,, such that for any o € +P*

implies that for any w € +P

n’

we have that CoCT € +£P¥. This

n?

we can find a 0 € P such that w = CoCT. Conclude that because C is unitary,
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C lw(C™H = CTwC = CTCoCCT = o € Pf. Hence C~1 € C,.

Appendix B: Relation between the error probabilities when using the trace distance and fidelity

Let tbest. 0<t<7andletwe {D; <e}={1—D; > 1—¢}. By [1 (9.110)], we have that 1 — F; < D; < /1 — F?
for all £ > 0. Consequentially 1 —D; < F; < /1 — th for all t > 0. On every such w, we thus also have that F; > 1 —e.

We have shown that {D; < e} C {F} > 1 —¢}, which proves the first statement. For the second statement, we similarly
note that {ming<s<¢ Fs > 1 — ¢} 2 {ming<s<¢(1 — Ds) > 1 — e} = {maxp<s<¢ Ds < €}. O

Appendix C: Number of stabilizer states for a gate

For n qubits, any gate M € G,, \ I®™ can be represented using a 2™ x 2" unitary matrix. Recall that any unitary
matrix of finite size is unitarily diagonalizable since every unitary matrix is normal [47]. A 2™ x 2™ matrix that is
diagonalizable must have a set of 2™ linearly independent eigenvectors [47].

The initial states 1) that can satisfy M|i) = €?¥|1)g) are the eigenvectors of the matrix M with eigenvalue A = e*7.
For any unitary matrix A with eigenvalue A and eigenvector v, ATA = AAT = I, vTv = vT AT Av = Aofol = ATavTo.
Also recall that any eigenvector ||v|| # 0 by definition [47] and thus it always holds that |A\| = 1. So M [¢) = A[¢ho) =
e’ |¢0> O]

Appendix D: A stabilizer state follows after a stabilizer state
By assumption and the definition in , for any state |1) € Rjy,y, IZ € Gn : [11) = 2 |tho) since G, is a group. we

have furthermore that 3H € G, \ I®" : HZ = ZM. Then [¢1) = Z [tho) = e T ZM |tho) = e"THZ |1po) = e~ H [1).
So H [1) = e |¢h1). 0

Appendix E: Gate-dependent error model

In Table[l} we provide the precise error probabilities used in Section [[V]

Appendix F: Method to find all reachable stabilizer states

All reachable stabilizer states can be found given the finite unitary group G, of gates (and noise) and the initial
stabilizer state |1o). Given an initial stabilizer state |1)g), the reduced states can be found by the following steps. First list
all gates (and noise) { My, My, -, M} in group G,,. All reachable states are then { M1 [1g) , Mo [to) , -+, My [1o)}
At last, any two states M; |1o) and M, [1ho) that satisfies M; [1hg) = €7 M |1hg) will fall into the same state.

Appendix G: Pseudo-code for gate-limited simulated annealing

In Algorithm [2] we present the pseudo-code for the simulated annealing algorithm when restricting to a subset of
available gates.

Appendix H: Improved circuits

In Figure [[1] we present the circuits with the lowest error accumulation rates found by our implementations of the
two simulated annealing algorithms.
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a1 0.990 0.003 0.003 0.003
c2 0.965 0.0123 0.0103 0.0123
c3 0.983 0.0043 0.0083 0.0043
4 0.977 0.0083 0.0103 0.0043
s 0.969 0.0113 0.0073 0.0123
e 0.984 0.0063 0.0043 0.0053
cr 0.979 0.0043 0.013 0.003
cg 0.987 0.0043 0.0033 0.0053
co 0.979 0.003 0.0093 0.0083
10 0.985 0.0053 0.0053 0.0043
ci1 0.980 0.0073 0.003 0.0093
c12 0.975 0.0083 0.0063 0.0103
c13 0.974 0.0113 0.0063 0.0083
ci4 0.975 0.0073 0.0063 0.0113
15 0.972 0.013 0.0093 0.0053
16 0.980 0.0043 0.0093 0.0063
c1r 0.979 0.0063 0.0093 0.0053
c1s 0.982 0.0103 0.0043 0.003
c19 0.977 0.0063 0.0043 0.0123
20 0.976 0.0113 0.0073 0.0103
c21 0.975 0.0073 0.073 0.0103
22 0.967 0.0073 0.0073 0.0103
23 0.974 0.013 0.0063 0.0063
Co4 0.978 0.0123 0.0053 0.0043

TABLE I. The specific error probabilities used in Section [V[B1.

Input: A group G,, a set A C G,, a circuit {Ui,...,U;}, and number of iterations w
Output: A revised circuit {GI*), ..., G}
begin

Initialize {G”,...,G"}y = (U4, ..., U, };

for n <1 to w do

Collect all m neighboring gates {(G[ln], G[Q"]), ce (ng]_l, GLZ])} with at least one replaceable candidate neighboring
gates {GELIH] €A, GEL’L” € A},

Choose I € [m — 1] uniformly at random;

Replace (GI" Gﬁl) by any gate pair in {(G1,G2) € A% | G} G[ﬂ]rl = G1G>} uniformly at random and then obtain
the new circuit J;

Choose X € [0, 1] uniformly at random;
if X <agm ;(T,) then

‘ Set GI"t1 =
else
‘ Set G+ — G["];
end
end
end

Algorithm 2: Pseudo-code for gate-limited simulated annealing.
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FIG. 11. (left) The entire improved one-qubit circuit with circuit length 7 = 100 obtained by Algorithm [1| (C' = 0.004). (right)
The entire improved two-qubit circuit with circuit length 7 = 50 obtained by Algorithm [2[ (C' = 0.002).
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