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Part I

Our idea and the motivation
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Our idea: Can we do clustering in Markov Chains (MCs)?

X0X1

. . .

XT

Figure: The goal of this paper is to infer the hidden cluster structure underlying a Markov chain
{Xt}t≥0, from one observation of a sample path X0, X1, . . . , XT of length T .
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The motivation

Clustering in MCs is motivated by Reinforcement Learning (RL) on large state spaces.

RL has recently received substantial attention due to its wide spectrum of applications
(robotics, games, medicine, finance, etc), or more popularly said, artificial intelligence.

In RL, the objective is to quickly identify an optimal control policy by observing a
trajectory of a Markov chain.

Unfortunately, the time to learn the best policies using e.g. Q-learning increases
dramatically with the number of states.

In practical problems however, different states may yield similar reward and exhibit
similar transition probabilities. In other words, states could maybe be clustered.
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Part II

The literature and our model
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Clustering in Stochastic Block Models (SBMs)

SBMs generate random graphs with groups of similar vertices.

E.g. Suppose V = V1 ∪ V2. An edge is drawn between x , y ∈ V w.p. p ∈ (0, 1) if they
belong to the same group, and w.p. q ∈ (0, 1), p ̸= q otherwise.

The goal is to infer the clusters from such an
observed random graph.
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Fundamental limits for clustering in SBMs in literature
Much literature exists on when and how we can cluster in SBMs.

To start, many papers laid foundation for the discovery of the fundamental limits:1

Including: Holland, Laskey, Leinhardt 1983; Bui, Chaudhuri, Leighton, Sipser 1984; Boppana 1987;
Dyer, Frieze 1989; Snijders, Nowicki 1997; Jerrum, Sorkin 1998; Condon, Karp 1999; Carson,
Impagliazzo 2001; McSherry 2001; Bickel, Chen 2009; Rohe, Chatterjee, Yi 2011, and more.

Theorem (Decelle, Krzakala, Moore, Zdeborova 2011; Massoulié 2014; Mossel, Neeman, Sly 2015)
If p = a/n, q = b/n, and |V1| = |V2|, then a − b ≥

√
2(a + b) is a necessary and

sufficient condition for the existence of algorithms that can detect the clusters.

Theorem (Abbe, Bandeira, Hall, 2014; Mossel, Neeman, Sly 2014)
If p = a ln n/n, q = b ln n/n, then |

√
a −

√
b| >

√
2 allows for exact recovery.

In both cases, efficient algorithms were also developed that achieve the thresholds!

1“Community detection and SBMs: recent developments”, Emmanuel Abbe, 2017 gives overview.
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Clustering in Block Markov Chains (BMCs)
Our work also investigates when and how we can cluster, but then in BMCs!

Cluster V1

Cluster V2

Xt

1−p1,2
|V1|−1

p1,2
|V2|

p2,1
|V1|

1−p2,1
|V2|−1

Let {Xt}t≥0 be a BMC with parameters (n, α, p). Its transition matrix is given by

Px ,y ,
pσ(x),σ(y)

|Vσ(y)| − 1[σ(x) = σ(y)]1[x ̸= y ] for all x , y ∈ V.

Its equilibrium distribution will be denoted by Πx for x ∈ V.
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Structure of the transition matrix

Here’s an example transition matrix for K = 3 clusters:

P =



0 p1,1
p1,2

3
p1,2

3
p1,2

3
p1,3

5
p1,3

5
p1,3

5
p1,3

5
p1,3

5
p1,1 0 p1,2

3
p1,2

3
p1,2

3
p1,3

5
p1,3

5
p1,3

5
p1,3

5
p1,3

5p2,1
2

p2,1
2 0 p2,2

2
p2,2

2
p2,3

5
p2,3

5
p2,3

5
p2,3

5
p2,3

5p2,1
2

p2,1
2

p2,2
2 0 p2,2

2
p2,3

5
p2,3

5
p2,3

5
p2,3

5
p2,3

5p2,1
2

p2,1
2

p2,2
2

p2,2
2 0 p2,3

5
p2,3

5
p2,3

5
p2,3

5
p2,3

5p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3 0 p3,3

4
p3,3

4
p3,3

4
p3,3

4p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3

p3,3
4 0 p3,3

4
p3,3

4
p3,3

4p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3

p3,3
4

p3,3
4 0 p3,3

4
p3,3

4p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3

p3,3
4

p3,3
4

p3,3
4 0 p3,3

4p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3

p3,3
4

p3,3
4

p3,3
4

p3,3
4 0


Note the block structure, and that p must be a stochastic matrix.
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Part III

Our main results
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Main results

We obtain quantitative statements for

E ,
K∪

k=1
V̂γopt(k)\Vk where γopt ∈ arg min

γ∈Perm(K)

∣∣∣ K∪
k=1

V̂γ(k)\Vk
∣∣∣.

Here, the sets V̂1, . . . , V̂K will always denote an approximate cluster assignment
obtained from some clustering algorithm.

Remark
Throughout, we assume that K , α, p are fixed, and we study the asymptotic regime
n → ∞. Our clustering procedure will assume that K is known, and α, p unknown.
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Information theoretical lower bound

Definition
For α ∈ ∆K−1 and p ∈ ∆∆(K−1)×K , let

I(α, p) , min
a ̸=b

{ K∑
k=1

1
αa

(
πapa,k ln pa,k

pb,k
+ πkpk,a ln pk,aαb

pk,bαa

)
+

( πb
αb

− πa
αa

)}
.

Here π denotes the solution to πTp = πT.

Theorem
Assume that T = ω(n). Then there exists a strictly positive and finite constant C
independent of n such that: for any clustering algorithm

EP [|E|] ≥ Cn exp
(

− I(α, p)T
n

(
1 + o(1)

))
.
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Asymptotically accurate / exact detection

Conditions for asymptotically accurate detection
In view of our lower bound,

EP
[ |E|

n
]

≥ C exp
(

− I(α, p)T
n

(
1 + o(1)

))
,

there may exist asymptotically accurate algorithms only if I(α, p) > 0 and T = ω(n).

Conditions for asymptotically exact detection
Similarly,

EP [|E|] ≥ C exp
(

ln n − I(α, p)T
n

(
1 + o(1)

))
,

so necessary conditions for the existence of an asymptotically exact algorithm are
I(α, p) > 0 and T − n ln(n)

I(α,p) = ω(1). In particular, T must scale atleast as n ln n.
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Clustering in the critical regime
There is a phase transition in the critical regime T = n ln n

0
0

1
1

p12

p
21

α2 = 1/4

0
0

1
1

p12
p
21

α2 = 1/2 Region where I(α, p) < 1.

Figure: (left, middle) The parameters (p1,2, p2,1) in blue for which asymptotic exact recovery
should be possible in the critical regime T = n ln n for K = 2 clusters. (right) The parameters
(α2, p1,2, p2,1) for which asymptotic exact recovery is likely not possible, i.e., I(α, p) < 1.
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Procedure for cluster recovery

We have now established necessary conditions for asymptotically accurate and exact
recovery, and identified performance limits satisfied by any clustering algorithm.

Next, we devised a clustering procedure that reaches these limits order-wise. Our
procedure takes a sample path X0, X1, . . . , XT as input and calculates

N̂x ,y ,
T−1∑
t=0

1[Xt = x , Xt+1 = y ] for x , y ∈ V,

and then proceeds in two steps called:

• the Spectral Clustering Algorithm (SCA), and
• the Cluster Improvement Algorithm (CIA)
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Spectral Clustering Algorithm (SCA)

Input: n, K , and a trajectory X0, X1, . . . , XT
Output: An approximate cluster assignment V̂ [0]

1 , . . . , V̂ [0]
K , and matrix N̂

1 begin
2 for x ← 1 to n do
3 for y ← 1 to n do
4 N̂x,y ←

∑T−1
t=0 1[Xt = x , Xt+1 = y ];

5 end
6 end
7 Calculate the trimmed matrices N̂Γ;
8 Calculate the Singular Value Decomposition (SVD) UΣV T of N̂Γ;
9 Order U, Σ, V s.t. the singular values σ1 ≥ σ ≥ . . . ≥ σn ≥ 0 are in descending order;

10 Construct the rank-K approximation R̂ =
∑K

k=1 σkU·,kV·,k
T;

11 Apply a K -means algorithm to [R̂, R̂⊤] to determine V̂ [0]
1 , . . . , V̂ [0]

K ;
12 end

Algorithm 1: Pseudo-code for the Spectral Clustering Algorithm.
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Performance of the SCA

Theorem
Assume that T = ω(n) and I(α, p) > 0. Then the proportion of misclassified states
after the Spectral Clustering Algorithm satisfies:

|E|
n = OP

( n
T ln T

n
)

= oP(1).

Thus the SCA achieves asymptotically accurate detection whenever this is possible.

Question! But there’s a huge problem. What does the SCA fail at?

Answer. The bound fails to guarantee asymptotic exact recovery, even in the case
T = ω(n ln(n)). We cannot guarantee that its recovery rate approaches Theorem 4’s
fundamental limit!
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Cluster Improvement Algorithm (CIA)
Input: An approximate assignment V̂ [t]

1 , . . . , V̂ [t]
K , and matrix N̂

Output: A revised assignment V̂ [t+1]
1 , . . . , V̂ [t+1]

K
1 begin
2 n← dim(N̂), V ← {1, . . . , n}, T ←

∑
x∈V

∑
y∈V N̂x,y ;

3 for a← 1 to K do
4 π̂a ← N̂V̂ [t]

a ,V/T , α̂a ← |V̂ [t]
a |/n, V̂ [t+1]

a ← ∅;
5 for b ← 1 to K do
6 p̂a,b ← N̂V̂ [t]

a ,V̂ [t]
b

/N̂V̂ [t]
a ,V ;

7 end
8 end
9 for x ← 1 to n do

10 copt
x ← arg maxc=1,...,K

{∑K
k=1

(
N̂x,V̂ [t]

k
ln p̂c,k + N̂V̂ [t]

k ,x ln p̂k,c
α̂c

)
− T

n ·
π̂c
α̂c

}
;

11 V̂ [t+1]
copt

x
← V̂ [t+1]

copt
x
∪ {x};

12 end
13 end

Algorithm 2: Pseudo-code for the Cluster Improvement Algorithm.
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Performance of the CIA

Theorem
Assume that T = ω(n) and I(α, p) > 0. Then there exists a constant C > 0 such that
for any t ≥ 1, after t iterations of the Clustering Improvement Algorithm, initially
applied to the output of the Spectral Clustering Algorithm, we have:

|E [t]|
n = OP

(
e−t

(
ln T

n −ln ln T
n

)
+ e−C T

n I(α,p)
)

Observe that for t = ln(n), the number of misclassified vertices after t applications of
the CIA is at most of the order ne−C T

n I(α,p). Up to the constant C , this corresponds to
Theorem 4’s fundamental recovery rate limit.

Plus, we have asymptotically exact detection when T = ω(n ln n) and I(α, p) > 0!
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Let’s start with an example – The observation and truth
Consider n = 300 states grouped into three clusters of respective relative sizes
α = (0.15, 0.35, 0.5). The transition rates between these clusters are defined by:
p =

(
0.9200, 0.0450, 0.0350; 0.0125, 0.8975, 0.0900; 0.0175, 0.0200, 0.9625

)
.

(a) N̂, unsorted (b) N̂, sorted (c) P, sorted
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Let’s start with an example – The procedure’s 99.7% recovery

(a) Initial clustering. (b) Final clustering.

Clustering in Block Markov Chains Sanders, Proutière, Yun 21/44



Our procedure in the critical regime
Consider K = 2, α2 = 1

2 , and T = n ln n. Pascal Lagerweij (a MSc student) helped us
numerically evaluate F̂1(ε) =

{
(p1,2, p2,1) ∈ (0, 1)2

∣∣∣EP
[

|E [t]|
n

]
≥ 1 − ε

}
.

After the SCA. After the CIA. F̂1(ε = 0.027)

Figure: The average proportion of well-classified states for each rasterpoint (p1,2, p2,1) ∈ (0, 1)2,
and numerical feasibility region of our clustering procedure (right), all in the critical regime
T = n ln n. The green line outlines the theoretical region I(α, p) ≤ 1 within which no algorithm
exists able to asymptotically recover the clusters exactly.
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Part IV

In conclusion
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Let us summarize

Our paper “Clustering in Block Markov Chains”:

• introduces Block Markov Chains (BMCs), a new interesting model;

• provides an information-theoretical lower bound for the detection error, tight
conditions for asymptotically accurate detection and an almost tight condition for
exact recovery;

• proposes an algorithm that almost reaches our information-theoretical lower
bound;

• develops a new spectrum concentration bound for random matrices with
dependent entries.

A preprint “Optimal Clustering Algorithms in Block Markov Chains” is available on
https://arxiv.org/abs/1712.09232. This will soon be updated.
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