Clustering in Block Markov Chains

Jaron Sanders¹² Alexandre Proutière¹ Se Young Yun³

¹KTH Royal Institute of Technology, Sweden

²Delft University of Technology, The Netherlands

³Korea Advanced Institute of Science and Technology, South Korea

Informs APS Conference 2019, Brisbane, Australia

Part I

Our idea and the motivation

Our idea: Can we do clustering in Markov Chains (MCs)?

Figure: The goal of this paper is to infer the hidden cluster structure underlying a Markov chain $\{X_t\}_{t>0}$, from one observation of a sample path X_0, X_1, \ldots, X_T of length T.

The motivation

Clustering in MCs is motivated by *Reinforcement Learning (RL)* on large state spaces.

RL has recently received substantial attention due to its wide spectrum of applications (robotics, games, medicine, finance, etc), or more popularly said, *artificial intelligence*.

The motivation

Clustering in MCs is motivated by *Reinforcement Learning (RL)* on large state spaces.

RL has recently received substantial attention due to its wide spectrum of applications (robotics, games, medicine, finance, etc), or more popularly said, *artificial intelligence*.

In RL, the objective is to quickly identify an optimal control policy by *observing a trajectory of a Markov chain*.

Unfortunately, the time to learn the best policies using e.g. Q-learning *increases dramatically* with the number of states.

The motivation

Clustering in MCs is motivated by *Reinforcement Learning (RL)* on large state spaces.

RL has recently received substantial attention due to its wide spectrum of applications (robotics, games, medicine, finance, etc), or more popularly said, *artificial intelligence*.

In RL, the objective is to quickly identify an optimal control policy by *observing a trajectory of a Markov chain*.

Unfortunately, the time to learn the best policies using e.g. Q-learning *increases dramatically* with the number of states.

In practical problems however, different states may yield *similar* reward and exhibit *similar* transition probabilities. **In other words, states could maybe be clustered.**

Part II

The literature and our model

Clustering in Stochastic Block Models (SBMs)

SBMs generate random graphs with groups of similar vertices.

E.g. Suppose $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$. An edge is drawn between $x, y \in \mathcal{V}$ w.p. $p \in (0, 1)$ if they belong to the same group, and w.p. $q \in (0, 1), p \neq q$ otherwise.

Clustering in Stochastic Block Models (SBMs)

SBMs generate random graphs with groups of similar vertices.

E.g. Suppose $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$. An edge is drawn between $x, y \in \mathcal{V}$ w.p. $p \in (0, 1)$ if they belong to the same group, and w.p. $q \in (0, 1), p \neq q$ otherwise.

The goal is to infer the clusters from such an observed random graph.

Much literature exists on when and how we can cluster in SBMs.

¹ "Community detection and SBMs: recent developments", Emmanuel Abbe, 2017 gives overview. Clustering in Block Markov Chains Sanders, Proutière, Yun 7/44

Much literature exists on when and how we can cluster in SBMs.

To start, many papers laid foundation for the discovery of the fundamental limits:¹ Including: Holland, Laskey, Leinhardt 1983; Bui, Chaudhuri, Leighton, Sipser 1984; Boppana 1987; Dyer, Frieze 1989; Snijders, Nowicki 1997; Jerrum, Sorkin 1998; Condon, Karp 1999; Carson, Impagliazzo 2001; McSherry 2001; Bickel, Chen 2009; Rohe, Chatterjee, Yi 2011, and more.

¹ "Community detection and SBMs: recent developments", Emmanuel Abbe, 2017 gives overview. Clustering in Block Markov Chains Sanders, Proutière, Yun 7/44

Much literature exists on when and how we can cluster in SBMs.

To start, many papers laid foundation for the discovery of the fundamental limits:¹ Including: Holland, Laskey, Leinhardt 1983; Bui, Chaudhuri, Leighton, Sipser 1984; Boppana 1987; Dyer, Frieze 1989; Snijders, Nowicki 1997; Jerrum, Sorkin 1998; Condon, Karp 1999; Carson, Impagliazzo 2001; McSherry 2001; Bickel, Chen 2009; Rohe, Chatterjee, Yi 2011, and more.

Theorem (Decelle, Krzakala, Moore, Zdeborova 2011; Massoulié 2014; Mossel, Neeman, Sly 2015) If p = a/n, q = b/n, and $|\mathcal{V}_1| = |\mathcal{V}_2|$, then $a - b \ge \sqrt{2(a+b)}$ is a necessary and sufficient condition for the existence of algorithms that can <u>detect</u> the clusters.

Theorem (Abbe, Bandeira, Hall, 2014; Mossel, Neeman, Sly 2014) If $p = a \ln n/n$, $q = b \ln n/n$, then $|\sqrt{a} - \sqrt{b}| > \sqrt{2}$ allows for <u>exact</u> recovery.

¹ "Community detection and SBMs: recent developments", Emmanuel Abbe, 2017 gives overview. Clustering in Block Markov Chains Sanders, Proutière, Yun 7/44

Much literature exists on when and how we can cluster in SBMs.

To start, many papers laid foundation for the discovery of the fundamental limits:¹ Including: Holland, Laskey, Leinhardt 1983; Bui, Chaudhuri, Leighton, Sipser 1984; Boppana 1987; Dyer, Frieze 1989; Snijders, Nowicki 1997; Jerrum, Sorkin 1998; Condon, Karp 1999; Carson, Impagliazzo 2001; McSherry 2001; Bickel, Chen 2009; Rohe, Chatterjee, Yi 2011, and more.

Theorem (Decelle, Krzakala, Moore, Zdeborova 2011; Massoulié 2014; Mossel, Neeman, Sly 2015) If p = a/n, q = b/n, and $|\mathcal{V}_1| = |\mathcal{V}_2|$, then $a - b \ge \sqrt{2(a+b)}$ is a necessary and sufficient condition for the existence of algorithms that can <u>detect</u> the clusters.

Theorem (Abbe, Bandeira, Hall, 2014; Mossel, Neeman, Sly 2014) If $p = a \ln n/n$, $q = b \ln n/n$, then $|\sqrt{a} - \sqrt{b}| > \sqrt{2}$ allows for <u>exact</u> recovery.

In both cases, efficient algorithms were also developed that achieve the thresholds!

¹ "Community detection and SBMs: recent developments", Emmanuel Abbe, 2017 gives overview. Clustering in Block Markov Chains Sanders, Proutière, Yun 7/44

Clustering in Block Markov Chains (BMCs)

Our work also investigates when and how we can cluster, but then in BMCs!

Clustering in Block Markov Chains (BMCs)

Our work also investigates when and how we can cluster, but then in BMCs!

Let $\{X_t\}_{t\geq 0}$ be a BMC with parameters (n, α, p) . Its transition matrix is given by

$$P_{x,y} \triangleq \frac{P_{\sigma(x),\sigma(y)}}{|\mathcal{V}_{\sigma(y)}| - \mathbb{1}[\sigma(x) = \sigma(y)]} \mathbb{1}[x \neq y] \quad \text{for all} \quad x, y \in \mathcal{V}.$$

Its equilibrium distribution will be denoted by Π_x for $x \in \mathcal{V}$.

Clustering in Block Markov Chains

Structure of the transition matrix

Here's an example transition matrix for K = 3 clusters:

	(0	$p_{1,1}$	$\frac{p_{1,2}}{3}$	$\frac{p_{1,2}}{3}$	$\frac{p_{1,2}}{3}$	$\frac{p_{1,3}}{5}$	$\frac{p_{1,3}}{5}$	$\frac{p_{1,3}}{5}$	$\frac{p_{1,3}}{5}$	$\frac{p_{1,3}}{5}$ \	١
P =	$p_{1,1}$	0	$\frac{p_{1,2}}{3}$	$\frac{p_{1,2}}{3}$	$\frac{p_{1,2}}{3}$	$\frac{p_{1,3}}{5}$	$\frac{p_{1,3}}{5}$	$\frac{p_{1,3}}{5}$	$\frac{p_{1,3}}{5}$	$\frac{p_{1,3}}{5}$	۱
	$\frac{p_{\overline{2},1}}{2}$	$\frac{p_{2,1}}{2}$	0	$\frac{p_{2,2}}{2}$	$\frac{p_{2,2}}{2}$	<u>P2,3</u>	$p_{2,3}$	<u> </u>	$p_{2,3}$	<u> </u>	I
	$\underline{p}_{2,1}^2$	$\frac{p_{2,1}^2}{2}$	$p_{2,2}$	$\hat{0}$	$\frac{p_{2,2}^2}{2}$	$p_{2,3}^{5}$	$p_{2,3}^{5}$	$p_{2,3}^{5}$	$p_{2,3}^{5}$	$p_{2,3}^{5}$	I
	$p_{2,1}^2$	$p_{2,1}^2$	$p_{2,2}^2$	<u>p</u> _{2,2}	$\overset{2}{0}$	$p_{2,3}^{5}$	$p_{2,3}^{5}$	$p_{2,3}^{5}$	$p_{2,3}^{5}$	$p_{2,3}^{5}$	I
	$p_{3,1}^2$	$-p_{3,1}^2$	$p_{3,2}^2$	$p_{3,2}^2$	$p_{3,2}$	0	$-\frac{5}{p_{3,3}}$	$-\frac{5}{\bar{p}_{3,\bar{3}}}$	$p_{3,3}^{5}$	$-\frac{5}{p_{3,\bar{3}}}$	I
	$p_{3,1}^2$	$p_{3,1}^2$	$p_{3,2}^{3}$	$p_{3,2}^{3}$	$p_{3,2}^{3}$	p 3,3	4	4 p 3,3	$p_{3,3}^{4}$	$p_{3,3}^{4}$	l
	$p_{3,1}^2$	$p_{3,1}^2$	$p_{3,2}^{3}$	$p_{3,2}^{3}$	$p_{3,2}^{3}$	$\frac{4}{p_{3,3}}$	p _{3,3}	4	$\overline{p_{3,3}^{4}}$	$\overline{p_{3,3}^{4}}$	I
	$p_{3,1}^2$	$p_{3,1}^2$	$\frac{3}{p_{3,2}}$	$p_{3,2}^{3}$	$\overline{p_{3,2}^3}$	$\frac{4}{p_{3,3}}$	$\overline{p_{3,3}^{4}}$	P3,3	4	$\frac{1}{p_{3,3}}$	I
	$\frac{1}{p_{3,1}^2}$	$\frac{p_{3,1}}{p_{3,1}^2}$	$\frac{3}{p_{3,2}}$	$\frac{3}{p_{3,2}^3}$	$\frac{3}{p_{3}^{2}}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{2}$	D3 3	4	J
	$\sqrt{\frac{r_{3,1}}{2}}$	$\frac{r_{3,1}}{2}$	$\frac{r_{3,2}}{3}$	$\frac{r_{3,2}}{3}$	$\frac{r^{3,2}}{3}$	4	4	4	4	0 /	1

Note the **block structure**, and that *p* must be a **stochastic matrix**.

Clustering in Block Markov Chains

Part III

Our main results

Clustering in Block Markov Chains

Main results

We obtain quantitative statements for

$$\mathcal{E} \triangleq \bigcup_{k=1}^{K} \hat{\mathcal{V}}_{\gamma^{\mathsf{opt}}(k)} \backslash \mathcal{V}_{k} \quad \text{where} \quad \gamma^{\mathsf{opt}} \in \arg\min_{\gamma \in \operatorname{Perm}(K)} \Bigl| \bigcup_{k=1}^{K} \hat{\mathcal{V}}_{\gamma(k)} \backslash \mathcal{V}_{k} \Bigr|.$$

Here, the sets $\hat{\mathcal{V}}_1, \ldots, \hat{\mathcal{V}}_K$ will always denote an approximate cluster assignment obtained from some clustering algorithm.

Main results

We obtain quantitative statements for

$$\mathcal{E} \triangleq \bigcup_{k=1}^{K} \hat{\mathcal{V}}_{\gamma^{\mathsf{opt}}(k)} \backslash \mathcal{V}_{k} \quad \text{where} \quad \gamma^{\mathsf{opt}} \in \arg\min_{\gamma \in \operatorname{Perm}(K)} \Bigl| \bigcup_{k=1}^{K} \hat{\mathcal{V}}_{\gamma(k)} \backslash \mathcal{V}_{k} \Bigr|.$$

Here, the sets $\hat{\mathcal{V}}_1, \ldots, \hat{\mathcal{V}}_K$ will always denote an approximate cluster assignment obtained from some clustering algorithm.

Remark

Throughout, we assume that K, α, p are fixed, and we study the asymptotic regime $n \to \infty$. Our clustering procedure will assume that K is known, and α, p unknown.

Clustering in Block Markov Chains

Information theoretical lower bound

Definition For $\alpha \in \Delta^{K-1}$ and $p \in \Delta^{(K-1) \times K}$, let

$$I(\alpha, p) \triangleq \min_{a \neq b} \left\{ \sum_{k=1}^{K} \frac{1}{\alpha_{a}} \left(\pi_{a} p_{a,k} \ln \frac{p_{a,k}}{p_{b,k}} + \pi_{k} p_{k,a} \ln \frac{p_{k,a} \alpha_{b}}{p_{k,b} \alpha_{a}} \right) + \left(\frac{\pi_{b}}{\alpha_{b}} - \frac{\pi_{a}}{\alpha_{a}} \right) \right\}.$$

Here π denotes the solution to $\pi^{\mathrm{T}} p = \pi^{\mathrm{T}}$.

Information theoretical lower bound

Definition For $\alpha \in \Delta^{K-1}$ and $p \in \Delta^{(K-1) \times K}$, let

$$I(\alpha, p) \triangleq \min_{a \neq b} \Big\{ \sum_{k=1}^{K} \frac{1}{\alpha_a} \Big(\pi_a p_{a,k} \ln \frac{p_{a,k}}{p_{b,k}} + \pi_k p_{k,a} \ln \frac{p_{k,a} \alpha_b}{p_{k,b} \alpha_a} \Big) + \Big(\frac{\pi_b}{\alpha_b} - \frac{\pi_a}{\alpha_a} \Big) \Big\}.$$

Here π denotes the solution to $\pi^{\mathrm{T}} p = \pi^{\mathrm{T}}$.

Theorem

Assume that $T = \omega(n)$. Then there exists a strictly positive and finite constant C independent of n such that: for any clustering algorithm

$$\mathbb{E}_{P}[|\mathcal{E}|] \geq Cn \exp\Big(-I(\alpha, p)\frac{T}{n}(1+o(1))\Big).$$

Clustering in Block Markov Chains

Asymptotically accurate / exact detection

Conditions for asymptotically accurate detection

In view of our lower bound,

$$\mathbb{E}_{P}\Big[\frac{|\mathcal{E}|}{n}\Big] \geq C \exp\Big(-I(\alpha,p)\frac{T}{n}(1+o(1))\Big),$$

there may exist asymptotically accurate algorithms only if $I(\alpha, p) > 0$ and $T = \omega(n)$.

Asymptotically accurate / exact detection

Conditions for asymptotically accurate detection

In view of our lower bound,

$$\mathbb{E}_{P}\Big[\frac{|\mathcal{E}|}{n}\Big] \geq C \exp\Big(-I(\alpha,p)\frac{T}{n}(1+o(1))\Big),$$

there may exist asymptotically accurate algorithms only if $I(\alpha, p) > 0$ and $T = \omega(n)$.

Conditions for asymptotically exact detection Similarly.

$$\mathbb{E}_{P}[|\mathcal{E}|] \geq C \exp\Big(\ln n - I(\alpha, p)\frac{T}{n}(1 + o(1))\Big),$$

so necessary conditions for the existence of an asymptotically *exact* algorithm are $l(\alpha, p) > 0$ and $T - \frac{n \ln(n)}{l(\alpha, p)} = \omega(1)$. In particular, T must scale atleast as $n \ln n$.

Clustering in Block Markov Chains

Clustering in the critical regime

There is a **phase transition** in the *critical regime* $T = n \ln n$

Figure: (left, middle) The parameters $(p_{1,2}, p_{2,1})$ in blue for which asymptotic exact recovery should be possible in the critical regime $T = n \ln n$ for K = 2 clusters. (right) The parameters $(\alpha_2, p_{1,2}, p_{2,1})$ for which asymptotic exact recovery is likely not possible, i.e., $I(\alpha, p) < 1$.

Clustering in Block Markov Chains

Procedure for cluster recovery

We have now established **necessary conditions** for asymptotically accurate and exact recovery, and identified **performance limits** satisfied by any clustering algorithm.

Procedure for cluster recovery

We have now established **necessary conditions** for asymptotically accurate and exact recovery, and identified **performance limits** satisfied by any clustering algorithm.

Next, we devised a clustering procedure that **reaches** these limits order-wise. Our procedure takes a sample path X_0, X_1, \ldots, X_T as input and calculates

$$\hat{N}_{x,y} \triangleq \sum_{t=0}^{T-1} \mathbb{1}[X_t = x, X_{t+1} = y] \text{ for } x, y \in \mathcal{V},$$

and then proceeds in two steps called:

- the Spectral Clustering Algorithm (SCA), and
- the Cluster Improvement Algorithm (CIA)

Clustering in Block Markov Chains

Spectral Clustering Algorithm (SCA)

```
Input: n, K, and a trajectory X_0, X_1, \ldots, X_T
    Output: An approximate cluster assignment \hat{\mathcal{V}}_{\mu}^{[0]}, \ldots, \hat{\mathcal{V}}_{\mu}^{[0]}, and matrix \hat{N}
 1 begin
          for x \leftarrow 1 to n do
 2
                for y \leftarrow 1 to n do
 3
            \hat{N}_{x,y} \leftarrow \sum_{t=0}^{T-1} \mathbb{1}[X_t = x, X_{t+1} = y];
 4
                 end
 5
 6
          end
          Calculate the trimmed matrices \hat{N}_{\Gamma}:
 7
          Calculate the Singular Value Decomposition (SVD) U\Sigma V^{T} of \hat{N}_{\Gamma}:
 8
          Order U, \Sigma, V s.t. the singular values \sigma_1 \ge \sigma \ge \ldots \ge \sigma_n \ge 0 are in descending order;
 9
          Construct the rank-K approximation \hat{R} = \sum_{k=1}^{K} \sigma_k U_{k} V_{k}^{T};
10
          Apply a K-means algorithm to [\hat{R}, \hat{R}^{\top}] to determine \hat{\mathcal{V}}_{1}^{[0]}, \ldots, \hat{\mathcal{V}}_{K}^{[0]};
11
12 end
```

Algorithm 1: Pseudo-code for the Spectral Clustering Algorithm.

Clustering in Block Markov Chains

Performance of the SCA

Theorem

Assume that $T = \omega(n)$ and $I(\alpha, p) > 0$. Then the proportion of misclassified states after the Spectral Clustering Algorithm satisfies:

$$rac{|\mathcal{E}|}{n} = O_{\mathbb{P}} \Big(rac{n}{T} \ln rac{T}{n} \Big) = o_{\mathbb{P}}(1).$$

Thus the SCA achieves asymptotically accurate detection whenever this is possible.

Question! But there's a huge problem. What does the SCA fail at?

Performance of the SCA

Theorem

Assume that $T = \omega(n)$ and $I(\alpha, p) > 0$. Then the proportion of misclassified states after the Spectral Clustering Algorithm satisfies:

$$rac{|\mathcal{E}|}{n} = O_{\mathbb{P}} \Big(rac{n}{T} \ln rac{T}{n} \Big) = o_{\mathbb{P}}(1).$$

Thus the SCA achieves asymptotically accurate detection whenever this is possible.

Question! But there's a huge problem. What does the SCA fail at?

Answer. The bound fails to guarantee asymptotic <u>exact</u> recovery, even in the case $T = \omega(n \ln(n))$. We cannot guarantee that its recovery rate approaches Theorem 4's fundamental limit!

Clustering in Block Markov Chains

Cluster Improvement Algorithm (CIA)

Input: An approximate assignment
$$\hat{\mathcal{V}}_{1}^{[t]}, \dots, \hat{\mathcal{V}}_{K}^{[t]}$$
, and matrix \hat{N}
Output: A revised assignment $\hat{\mathcal{V}}_{1}^{[t+1]}, \dots, \hat{\mathcal{V}}_{K}^{[t]}$
begin
 $n \leftarrow \dim(\hat{N}), \mathcal{V} \leftarrow \{1, \dots, n\}, T \leftarrow \sum_{x \in \mathcal{V}} \sum_{y \in \mathcal{V}} \hat{N}_{x,y};$
for $a \leftarrow 1$ to K do
 $\hat{n}_{a} \leftarrow \hat{N}_{\hat{\mathcal{V}}_{a}^{[t]}, \mathcal{V}}/T, \hat{\alpha}_{a} \leftarrow |\hat{\mathcal{V}}_{a}^{[t]}|/n, \hat{\mathcal{V}}_{a}^{[t+1]} \leftarrow \emptyset;$
for $b \leftarrow 1$ to K do
 $\hat{p}_{a,b} \leftarrow \hat{N}_{\hat{\mathcal{V}}_{a}^{[t]}, \hat{\mathcal{V}}_{b}^{[t]}}/\hat{N}_{\hat{\mathcal{V}}_{a}^{[t]}, \mathcal{V}};$
r end
end
for $x \leftarrow 1$ to n do
 $\hat{c}_{x}^{\text{opt}} \leftarrow \arg\max_{c=1,\dots,K} \left\{ \sum_{k=1}^{K} (\hat{N}_{x, \hat{\mathcal{V}}_{k}^{[t]}} \ln \hat{p}_{c,k} + \hat{N}_{\hat{\mathcal{V}}_{k}^{[t]}, x} \ln \frac{\hat{p}_{k,c}}{\hat{\alpha}_{c}}) - \frac{T}{n} \cdot \frac{\hat{\pi}_{c}}{\hat{\alpha}_{c}} \right\};$
 $\hat{\mathcal{V}}_{c_{x}^{\text{opt}}}^{[t+1]} \leftarrow \hat{\mathcal{V}}_{c_{x}^{\text{opt}}}^{[t+1]} \cup \{x\};$
end
end

Algorithm 2: Pseudo-code for the Cluster Improvement Algorithm.

Clustering in Block Markov Chains

Performance of the CIA

Theorem

Assume that $T = \omega(n)$ and $I(\alpha, p) > 0$. Then there exists a constant C > 0 such that for any $t \ge 1$, after t iterations of the Clustering Improvement Algorithm, initially applied to the output of the Spectral Clustering Algorithm, we have:

$$\frac{|\mathcal{E}^{[t]}|}{n} = O_{\mathbb{P}}\left(e^{-t\left(\ln\frac{T}{n} - \ln\ln\frac{T}{n}\right)} + e^{-C\frac{T}{n}I(\alpha,p)}\right)$$

Performance of the CIA

Theorem

Assume that $T = \omega(n)$ and $I(\alpha, p) > 0$. Then there exists a constant C > 0 such that for any $t \ge 1$, after t iterations of the Clustering Improvement Algorithm, initially applied to the output of the Spectral Clustering Algorithm, we have:

$$\frac{|\mathcal{E}^{[t]}|}{n} = O_{\mathbb{P}}\left(e^{-t\left(\ln\frac{T}{n} - \ln\ln\frac{T}{n}\right)} + e^{-C\frac{T}{n}I(\alpha,p)}\right)$$

Observe that for $t = \ln(n)$, the number of misclassified vertices after t applications of the CIA is at most of the order $ne^{-C\frac{T}{n}I(\alpha,p)}$. Up to the constant C, this corresponds to Theorem 4's fundamental recovery rate limit.

Plus, we have asymptotically exact detection when $T = \omega(n \ln n)$ and $I(\alpha, p) > 0!$

Clustering in Block Markov Chains

Let's start with an example – The observation and truth

Consider n = 300 states grouped into three clusters of respective relative sizes $\alpha = (0.15, 0.35, 0.5)$. The transition rates between these clusters are defined by: p = (0.9200, 0.0450, 0.0350; 0.0125, 0.8975, 0.0900; 0.0175, 0.0200, 0.9625).

Clustering in Block Markov Chains

Let's start with an example – The procedure's 99.7% recovery

Clustering in Block Markov Chains

Our procedure in the critical regime

Consider $\mathcal{K} = 2$, $\alpha_2 = \frac{1}{2}$, and $\mathcal{T} = n \ln n$. Pascal Lagerweij (a MSc student) helped us numerically evaluate $\hat{\mathcal{F}}_1(\varepsilon) = \left\{ (p_{1,2}, p_{2,1}) \in (0, 1)^2 \Big| \mathbb{E}_P \Big[\frac{|\mathcal{E}^{[t]}|}{n} \Big] \ge 1 - \varepsilon \right\}.$

Figure: The average proportion of well-classified states for each rasterpoint $(p_{1,2}, p_{2,1}) \in (0, 1)^2$, and numerical feasibility region of our clustering procedure (right), all in the critical regime $T = n \ln n$. The green line outlines the theoretical region $I(\alpha, p) \leq 1$ within which no algorithm exists able to asymptotically recover the clusters exactly.

Clustering in Block Markov Chains

Part IV

In conclusion

Clustering in Block Markov Chains

Let us summarize

Our paper "Clustering in Block Markov Chains":

- introduces Block Markov Chains (BMCs), a new interesting model;
- provides an information-theoretical lower bound for the detection error, tight conditions for asymptotically accurate detection and an almost tight condition for exact recovery;

Let us summarize

Our paper "Clustering in Block Markov Chains":

- introduces BMCs, a new interesting model;
- provides an information-theoretical lower bound for the detection error, tight conditions for asymptotically accurate detection and an almost tight condition for exact recovery;
- proposes an algorithm that almost reaches our information-theoretical lower bound;
- develops a new spectrum concentration bound for random matrices with *dependent* entries.

A preprint "Optimal Clustering Algorithms in Block Markov Chains" is available on https://arxiv.org/abs/1712.09232. This will soon be updated.

Clustering in Block Markov Chains