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Relevancy and Future Research
The ability to accurately discover all hidden relations between items that share similarities is of paramount importance to a wide range of disciplines. Clus-
tering algorithms are employed throughout social sciences, biology, computer science, economics, and physics. The reason these techniques are prevalent
is that once clusters have been identified, any subsequent analysis or optimization procedure benefits from a powerful reduction in dimensionality.

Our paper is a world’s first on extending the classical Stochastic Block Model (SBM) type of results, which are valid for random graphs, into the
domain of biased random walks. It opens up many new exciting research directions:

• We hope to extend the techniques developed here for an uncontrolled Block Markov Chain (BMC) to the more general case of controlled Markov
chains, and devise reinforcement learning algorithms that will efficiently exploit an underlying cluster structure.

• We require further investigating into how eigenvalues of biased random matrices concentrate around its spectrum. The reason is that BMCs
introduce mathematical challenges due to the time-dependencies of samples. We aim to extend fundamental insights like Wigner’s Semicircle Law.

• Finite BMCs live on countable state spaces. We now have the ambitious goal to generalize our clustering algorithm to continuous state spaces.

Summary

Our paper considers cluster detection in BMCs. These Markov chains are characterized by a block structure in their transition
matrix. More precisely, the n possible states are divided into a finite number of K groups or clusters, such that states in
the same cluster exhibit the same transition rates to other states. One observes a trajectory of the Markov chain, and the
objective is to recover, from this observation only, the initially unknown clusters. In this paper we devise a clustering procedure
that accurately (≈ 100% recovery), efficiently (= from the shortest paths), and provably (so mathematically guaranteed!)
detects the clusters. We first derive a fundamental information-theoretical lower bound on the detection error rate satisfied
under any clustering algorithm. This bound identifies the parameters of the BMC, and trajectory lengths T , for which it is
possible to accurately detect the clusters. We next develop two clustering algorithms that can together accurately recover the
cluster structure from the shortest possible trajectories, whenever the parameters allow detection. These algorithms thus reach
the fundamental detectability limit, and are optimal in that sense.

The Algorithms

Our clustering procedure consists of two steps. First, we cluster
the majority of states roughly correctly through a rank-K ap-
proximation of a random matrix corresponding to the empirical
transition rates between any pair of states, and a subsequent
application of a K-means algorithm. Next, we exploit the just-
learned rough structure and the sample path to move each in-
dividual state into the cluster the state most likely belongs to
through a recursive, local maximization of a log-likelihood ratio.
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This research was performed at the KTH Royal Institute of Technology, Stockholm, Sweden. We now continue our collaboration, working from TU Delft and KTH, respectively.

Our goal is to infer the hidden cluster structure underlying a Markov
chain from one observation of a sample path X0, X1, . . . , XT .

A Demonstration

(a) Unknown kernel P . (b) Noisy observation. (c) Initial clustering. (d) Final clustering.

In these simulations to
your left, we generated
a path of length T =
n1.025 ln n ≈ 1973 for
n = 300 and K = 3.
Once our algorithm fin-
ished, 99.7% of all states
were accurately clustered.

The Fundamental Detectability Limit
Let π solve πTp = πT, and for any stochastic vector α and matrix p, set I(α, p) , mina ̸=b
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“Lower bound”: If I(α, p) > 0, then ∃ strictly positive, finite constants C, J(α, p) independent of n such that EP
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for any clustering algorithm.

“Upper bound”: If I(α, p) > 0, if ∃0<η ̸=1 : maxa,b,c=1,...,K{pb,a/pc,a, pa,b/pa,c} ≤ η, ∥N̂ − N∥ = OP(f (n, T )) for some f (n, T ) = o(T/n), and if ∥P̂ − P∥ = OP(g(n, T )) for some
g(n, T ) = o(1), then ∃ a clustering algorithm that misclassifies |E| = oP(1) states.
As a consequence, a necessary condition for the existence of an asymptotically exact clustering algorithm, i.e., such that EP [|E|] = o(1), is T = ω(n ln n).
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|V2|−1 We invite all people who are interested in doing research with us to contact us. If

you e.g. are a MSc student looking for a PhD position or a PhD candidate looking
for a postdoc position, or wish to collaborate and jointly apply for funding, tell us!
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