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This paper considers cluster detection in Block Markov Chains

(BMCs). These Markov chains are characterized by a block structure
in their transition matrix. More precisely, the n possible states are
divided into a finite number of K groups or clusters, such that states
in the same cluster exhibit the same transition rates to other states.
One observes a trajectory of the Markov chain, and the objective is
to recover, from this observation only, the (initially unknown) clus-
ters. In this paper we devise a clustering procedure that accurately,
efficiently, and provably detects the clusters. We first derive a fun-
damental information-theoretical lower bound on the detection error
rate satisfied under any clustering algorithm. This bound identifies
the parameters of the BMC, and trajectory lengths, for which it is pos-
sible to accurately detect the clusters. We next develop two clustering
algorithms that can together accurately recover the cluster structure
from the shortest possible trajectories, whenever the parameters allow
detection. These algorithms thus reach the fundamental detectability
limit, and are optimal in that sense.

1. Introduction. The ability to accurately discover all hidden relations between items that
share similarities is of paramount importance to a wide range of disciplines. Clustering algorithms
in particular are employed throughout social sciences, biology, computer science, economics, and
physics. The reason these techniques have become prevalent is that once clusters of similar items
have been identified, any subsequent analysis or optimization procedure benefits from a powerful
reduction in dimensionality.

The canonical Stochastic Block Model (SBM), originally introduced in [1], has become the
benchmark to investigate the performance of cluster detection algorithms. This model generates
random graphs that contain groups of similar vertices. Vertices within the same group are similar
in that they share the same average edge densities to the other vertices. More precisely, if the set
of n vertices V is for example partitioned into two groups V1 and V2, an edge is drawn between
two vertices x, y ∈ V with probability p ∈ (0, 1) if they belong to the same group, and with
probability q ∈ (0, 1), p 6= q, if they belong to different groups. Edges are drawn independently of
all other edges. Within the context of the SBM and its generalizations, the problem of cluster
detection is to infer the clusters from observations of a realization of the random graph with the
aforementioned structure.

This paper generalizes the problem of cluster detection when the observation is the sample
path of a Markov chain over the set of vertices. Specifically, we introduce the Block Markov
Chain (BMC), which is a Markov chain characterized by a block structure in its transition
matrix. States that are in the same cluster are similar in the sense that they have the same
transition rates. The goal is to detect the clusters from an observed sample path X0, X1, . . . , XT

of the Markov chain (Figure 1). This extension is mathematically challenging because consecutive
samples of the random walk are not independent: besides noise, there is bias in a sample path.
Intuitively though there is hope for accurate cluster detection if the Markov chain can get close
to stationarity within T steps. Indeed, as we will show, the mixing time [2] of the BMC plays a
crucial role in the detectability of the clusters.

Clustering in BMCs is motivated by reinforcement learning problems [3] with large state
spaces. These problems are concerned with the control of dynamical systems modeled as Markov
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2 J. SANDERS AND A. PROUTIÈRE

X0X1
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Fig 1: The goal of this paper is to infer the hidden cluster structure underlying a Markov chain
{Xt}t≥0, from one observation of a sample path X0, X1, . . . , XT of length T .

chains whose transition kernels are initially unknown. The objective is to identify an optimal
control policy as early as possible by observing the trajectory of a Markov chain generated under
some known policy. The time it takes to learn efficient policies using standard algorithms such as
Q-learning dramatically increases with the number of possible states, so that these algorithms
become useless when the state space is prohibitively large. In most practical problems however,
different states may yield similar reward and exhibit similar transition probabilities to other
states, i.e., states can be grouped into clusters. In this scenario it becomes critical to learn and
leverage this structure in order to speed up the learning process. In this paper we consider
uncontrolled Markov chains, and we aim to identify clusters of states of quickly as possible. In the
future we hope to extend the techniques developed here for an uncontrolled BMC to the more
general case of controlled Markov chains, and hence to devise reinforcement learning algorithms
that will efficiently exploit an underlying cluster structure.

This paper answers two major questions for the problem of cluster detection on BMCs. First,
we derive a fundamental information-theoretical clustering error lower bound. The latter allows us
to identify the parameters of the BMC and the sample path lengths T for which it is theoretically
possible to accurately detect the underlying cluster structure. By accurately, we mean that the
proportion of misclassified states vanishes as n grows large. Second, we develop two clustering
algorithms that when combined, are able to accurately detect the underlying cluster structure
from the shortest possible sample paths, whenever the parameters of the BMC allow detection,
and that provably work as n→∞. These algorithms thus reach the fundamental detectability
limit, and are optimal in that sense.

1.1. Related work. Significant advances have been made on cluster recovery within the context
of the SBM and its generalizations. We defer the reader to [4] for an extensive overview. Substantial
focus has in particular been on characterizing the set of parameters for which some recovery
objectives can be met.

In the sparse regime, i.e., when the average degree of vertices is O(1), necessary and sufficient
conditions on the parameters have been identified under which it is possible to extract clusters
that are positively correlated with the true clusters [5–7]. More precisely, for example if p = a

n and
q = b

n and in the case of two clusters of equal sizes, it was conjectured in [5] that a−b ≥
√

2(a+ b)
is a necessary and sufficient condition for the existence of algorithms that can detect the clusters
(in the sense that they perform better than a random assignment of items to clusters). This
result was established in [7] (necessary condition) and in [6] (sufficient condition).

In the dense regime, i.e., when the average degree is ω(1), it is possible to devise algorithms
under which the proportion of misclassified vertices vanishes as the size of the graph grows
large [8]. In this case, one may actually characterize the minimal asymptotic (as n grows large)
classification error, and develop clustering algorithms achieving this fundamental limit [9]. We
may further establish conditions under which asymptotic exact cluster recovery is possible [9–16].
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OPTIMAL CLUSTERING ALGORITHMS IN BMCS 3

This paper draws considerable inspiration from [8–10]. Over the course of these papers, the
authors consider the problem of clustering in the Labeled Stochastic Block Model (LSBM), which
is a generalization of the SBM. They identify the set of LSBM-parameters for which the clusters
can be detected using change-of-measure arguments, and develop algorithms based on spectral
methods that achieve this fundamental performance limit. Our contributions in this paper include
the extension of the approaches to the context of Markov chains. This required us in particular
to design novel changes-of-measure, carefully incorporate the effect of mixing, deal with new and
non-convex log-likelihood functions, and widen the applicability of spectral methods to random
matrices with bias.

1.2. Methodology. Similar to the extensive efforts for the SBM, we will identify parameters of
the BMC for which it is theoretically possible to detect the clusters. We will furthermore provide
a clustering algorithm that achieves this fundamental limit. The key difference between clustering
in SBMs and clustering in BMCs is that instead of observing (the edges of) a random graph,
we now try to infer the cluster structure from an as short as possible sample path. The sample
path will be inherently noisy and biased by construction, and this necessitates a careful analysis
of the mixing time of the Markov chain [2]. The mixing time is a measure for how close the
Markov chain is to stationarity, intuitively a prerequisite for successful clustering. By analyzing
the mixing time, we are able to use powerful concentration inequalities [17] that can deal with
the bias inherent in the sample path. One difficulty we encounter is that a BMC is not necessarily
reversible, forcing us to employ a nonstandard mixing time bound [18].

Our analysis consists of two parts. In the first part we use techniques from information theory
to derive a lower bound on the number of misclassified states that holds for any classification
algorithm. This relies on a powerful change-of-measure argument, originally explored in [19] in
the context of online stochastic optimization. First, we relate the probability of misclassifying a
state in the BMC to a log-likelihood ratio that the sample path was generated by a perturbed
Markov chain instead. Then, given any BMC, we show how to construct a perturbed Markov
chain that assigns a nonzero probability to the event that all clustering algorithms misclassify
at least one particular state. Finally, we maximize over all possible perturbations to get the
best possible lower bound that holds for any algorithm. The second part consists of developing
a clustering algorithm that can asymptotically detect the clusters. Specifically, we develop a
two-step procedure. The first step consists in applying a classical Spectral Clustering Algorithm.
This algorithm essentially creates a rank-K approximation of a random matrix corresponding to
the empirical transition rates between any pair of states, and then uses a K-means algorithm
[20] to cluster all states. We show that this first step clusters the majority of states roughly
correctly. Next, we introduce the Cluster Improvement Algorithm. This algorithm uses the rough
structure learned from the Spectral Clustering Algorithm, together with the sample path, to
move each individual state into the cluster the state most likely belongs to. This is achieved
through a recursive, local maximization of a log-likelihood ratio.

In our derivations, we encounter two challenging issues. The noise and bias within the sample
path have to first be related to the spectrum of the random matrix, for which we use techniques of
[21]. Then, because the entries of this random matrix are not independent, it is hard to quantify
the concentration of its eigenvalues. While concentration of the eigenvalues of a random matrix
has been actively investigated when the entries are independent or satisfy a weak condition of
dependence [22–27], or when the transition matrix of the Markov chain itself is random [28, 29],
we have been unable to find work related to the case when the entries are dictated by a Markov
chain with a fixed transition matrix with a block structure. That is why we choose, for now, to
settle for asymptotic results. We believe that studying the concentration of noisy, biased random
matrices is an important open problem, refer to Section 8 for a detailed discussion.

1.3. Overview. This paper is structured as follows. We introduce the BMC in Section 2.
Section 3 provides an overview of our results and our algorithms. We subsequently prove our
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4 J. SANDERS AND A. PROUTIÈRE

results by first deriving an information lower bound and developing an optimal change-of-measure
in Section 4, and then by developing the Spectral Clustering Algorithm in Section 5 and the Cluster
Improvement Algorithm in Section 6. We assess the performance of both algorithms, i.e., we
quantify their asymptotic error rates. Section 7 discusses several numerical experiments designed
to test the algorithms. Section 8 discusses an open problem of spectral norm concentration of a
biased random matrix.

Notation. For any two sets A,B ⊆ V we define their symmetric difference by A4B =
{A\B} ∪ {B\A}. For any two numbers a, b ∈ R we introduce the shorthand notations a ∧ b =
min{a, b} and a∨ b = max{a, b}. For any n-dimensional vector x = (x1, . . . , xn)T ∈ Rn, we define
its lp norms by

‖x‖p =
( n∑
r=1
|xi|p

)1/p

The n-dimensional unit vector of which the r-th component equals 1 will be denoted by en,r, and
the n-dimensional vector for which all elements r ∈ A ⊆ {1, . . . , n} equal 1 will be denoted by 1A.
For any m× n matrix A ∈ Rm×n, we indicate its rows by Ar,· for r = 1, . . . ,m and its columns
by A·,c for c = 1, . . . , n. We also introduce the short-hand notation AA,B =

∑
x∈A

∑
y∈B Ax,y for

all subsets A,B ⊆ V. Its Frobenius norm and spectral norm are defined by

‖A‖F =

√√√√ m∑
r=1

n∑
c=1

A2
r,c, ‖A‖ = sup

b∈Sn−1
{‖Ab‖2},

respectively. Here, Sn−1 = {x = (x1, . . . , xn) ∈ (0, 1)n : ‖x‖2 = 1} denotes the n-dimensional unit
sphere. We define the probability simplex of dimension n− 1 by ∆n−1 =

{
x ∈ (0, 1)n : ‖x‖1 = 1

}
as well as the set of left stochastic matrices ∆∆(n−1)×n =

{
((x1,1, . . . , x1,n), . . . , (xn,1, . . . , xn,n)) ∈

[0, 1]n×n :
∑n
c=1 xr,c = 1 for r = 1, . . . , n

}
similarly.

In our asymptotic analyses, we write f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1, f(n) = o(g(n)) if
limn→∞ f(n)/g(n) = 0 and f(n) = O(g(n)) if lim supn→∞ f(n)/g(n) <∞. Whenever {Xn}∞n=1
is a sequence of real-valued random variables and {an}∞n=1 a deterministic sequence, we write

Xn = oP(an)⇔ lim
n→∞

P
[∣∣∣Xn

an

∣∣∣ ≥ δ] = 0∀δ>0 ⇔ ∀ε,δ∃Nε,δ : P
[∣∣∣Xn

an

∣∣∣ ≥ δ] ≤ ε ∀n>Nε,δ ,
and Xn = OP(an)⇔ ∀ε∃δε,Nε : P

[∣∣∣Xn

an

∣∣∣ ≥ δε] ≤ ε ∀n>Nε .
Similarly, Xn = ΩP(an) denotes ∀ε∃δε,Nε : P[|Xn/an| ≤ δε] ≤ ε∀n>Nε , and Xn �P (an) means
∀ε∃δ−ε ,δ+

ε ,Nε
: P[δ−ε ≤ |Xn/an| ≤ δ+

ε ] ≥ 1− ε∀n>Nε .

2. Block Markov Chains (BMCs). We assume that we have n states V = {1, . . . , n},
each of which is associated to one of K clusters. This means that the set of states is partitioned
so that V = ∪Kk=1Vk with Vk ∩ Vl = ∅ for all k 6= l. Let σ(v) denote the cluster of a state v ∈ V.
We also assume that there exist constants α ∈ ∆K−1 so that limn→∞ |Vk|/(nαk) = 1.

For any α ∈ ∆K−1 and p ∈ ∆(K−1)×K , we define the BMC {Xt}t≥0 as follows. Its transition
matrix P ∈ ∆∆(n−1)×n will be defined as

(1) Px,y ,
pσ(x),σ(y)

|Vσ(y)| − 1[σ(x) = σ(y)]1[x 6= y] for all x, y ∈ V.

Note that this Markov chain is not necessarily reversible.
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OPTIMAL CLUSTERING ALGORITHMS IN BMCS 5

2.1. Equilibrium behavior. We assume that the stochastic matrix p is such that the equilibrium
distribution of {Xt}t≥0 exists, and we will denote it by Πx for x ∈ V . By symmetry, Πx = Πy , Π̄k

for any two states x, y ∈ Vk for all k = 1, . . . ,K. Consider the scaled quantity

πk , lim
n→∞

∑
x∈Vk

Πx = lim
n→∞

|Vk|Π̄k for k = 1, . . . ,K.

Proposition 1. The quantity π solves πTp = πT, and is therefore the equilibrium distribution
of a Markov chain with transition matrix p and state space Ω = {1, . . . ,K}.

Proof. We first prove that π is a probability distribution. This follows by (i) definition of π,
(ii) symmetry of all states in the same cluster, and (iii) because Π is a probability distribution:

K∑
k=1

πk
(i)=

K∑
k=1

lim
n→∞

Π̄k|Vk|
(ii)= lim

n→∞

K∑
k=1

∑
x∈Vk

Πx = lim
n→∞

∑
x∈V

Πx
(iii)= 1.

Next, we show that the balance equations hold. For k = 1, . . . ,K it follows by symmetry of
any two states x, z ∈ Vk that Πx = Πz = Π̄k. Hence for any y ∈ Vl, by (iv) global balance

Πy = Π̄l
(iv)=

K∑
k=1

∑
x∈Vk

ΠxPx,y =
K∑
k=1

Π̄k(|Vk| − 1[k = l]) pk,l
|Vl| − 1[k = l] .

Letting n→∞, we find that πl =
∑K
k=1 πkpk,l for all k, l. This completes the proof.

2.2. Mixing time. Proposition 2 gives a bound on the mixing time tmix ∈ (0,∞), which is
defined by

(2) d(t) , max
x∈V

{
d2(P tx,·,Π)

}
and tmix(ε) , min{t ≥ 0 : d(t) ≤ ε},

where

(3) dp(µ, ν) ,
(∑
x∈V

∣∣∣ µxΠx
− νx

Πx

∣∣∣pΠx

)1/p
for p ∈ [1,∞).

Proposition 2. There exists a strictly positive constant cmix > 0 independent of n such that
tmix(ε) ≤ −cmix ln ε.

Proposition 2 implies that the mixing times are short enough so that our results will hold
irrespective of whether we assume that the Markov chain is initially in equilibrium. We will show
in Section 4.4 that what is important is that the chain reaches stationarity within T steps (the
length of the observed trajectory), and consequentially, T needs to be chosen sufficiently large
with respect to n to ensure that this occurs. Throughout this paper we therefore assume for
simplicity that the chain is started from equilibrium. This eliminates the need of tracking higher
order correction terms. For the proof of Proposition 2, see Appendix C.

Examples. Figure 2 illustrates the structure of a BMC when there are K = 2 groups. We
find after solving the balance equations that the limiting equilibrium behavior is given by
π1 = p21/(p12 + p21) and π2 = p12/(p12 + p21).

For K = 3, we find after solving the balance equations that the limiting equilibrium behavior
is given by

π1 = p23p31 + p21(p31 + p32)
Z(p) , π2 = p13p32 + p12(p31 + p32)

Z(p) , π3 = p12p23 + p13(p21 + p23)
Z(p) ,
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6 J. SANDERS AND A. PROUTIÈRE

Cluster V1

Cluster V2

Xt

1−p1,2
|V1|−1

p1,2
|V2|

p2,1
|V1|

1−p2,1
|V2|−1

Fig 2: In the BMC with K = 2 groups V1 ∪ V2 = V, whenever the Markov chain is at some
state Xt ∈ V1, it will next jump with probability p1,2 to cluster V2, and with probability 1− p1,2
to some other state in cluster V1. Similarly, if Xt ∈ V2, it would next jump to cluster V1 with
probability p2,1, or stay within its own cluster with probability 1− p2,1.

with Z(p) = (p21 + p23)(p13 + p31) + (p13 + p21)p32 + p12(p23 + p31 + p32). Let us also illustrate
the structure of the transition matrix when α = (2/10, 3/10, 5/10) and n = 10:

(4) P =



0 p1,1
p1,2

3
p1,2

3
p1,2

3
p1,3

5
p1,3

5
p1,3

5
p1,3

5
p1,3

5
p1,1 0 p1,2

3
p1,2

3
p1,2

3
p1,3

5
p1,3

5
p1,3

5
p1,3

5
p1,3

5
p2,1

2
p2,1

2 0 p2,2
2

p2,2
2

p2,3
5

p2,3
5

p2,3
5

p2,3
5

p2,3
5

p2,1
2

p2,1
2

p2,2
2 0 p2,2

2
p2,3

5
p2,3

5
p2,3

5
p2,3

5
p2,3

5
p2,1

2
p2,1

2
p2,2

2
p2,2

2 0 p2,3
5

p2,3
5

p2,3
5

p2,3
5

p2,3
5

p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3 0 p3,3

4
p3,3

4
p3,3

4
p3,3

4
p3,1

2
p3,1

2
p3,2

3
p3,2

3
p3,2

3
p3,3

4 0 p3,3
4

p3,3
4

p3,3
4

p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3

p3,3
4

p3,3
4 0 p3,3

4
p3,3

4
p3,1

2
p3,1

2
p3,2

3
p3,2

3
p3,2

3
p3,3

4
p3,3

4
p3,3

4 0 p3,3
4

p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3

p3,3
4

p3,3
4

p3,3
4

p3,3
4 0


3. Summary of our results. In this paper we obtain quantitative statements on the set

of misclassified states,

E , min
all permutations γ

K⋃
k=1
V̂γ(k)\Vk.

Here, the sets V̂1, . . . , V̂K will always denote an approximate cluster assignment obtained from
some clustering algorithm. For notational convenience we will always number the approximate
clusters so as to minimize the number of misclassifications, allowing us to forego defining it
formally via a permutation. We will now also note that in this paper, we restrict the analysis to
the case that the number of clusters K is known. This reduces the complexity of the analysis.
Based on the findings in [8–10] however, we are confident that this assumption can be relaxed in
future work.

Let us now summarize our results: for the precise statements, see Sections 4–6. The results
identify an important quantity I(α, p) that measures how difficult it is to cluster in a BMC.

Definition. For α ∈ ∆K−1 and p ∈ ∆∆(K−1)×K , let

(5) I(α, p) , min
a6=b

{ K∑
k=1

1
αa

(
πapa,k ln pa,k

pb,k
+ πkpk,a ln pk,aαb

pk,bαa

)
+
(πb
αb
− πa
αa

)}
.

Here π denotes the solution to πTp = πT.
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OPTIMAL CLUSTERING ALGORITHMS IN BMCS 7

Result (Theorem 1). If I(α, p) > 0, then there exist strictly positive, finite constants
C, J(α, p) independent of n such that

EP
[ |E|
n

]
≥ C exp

(
−J(α, p)T

n
+ o

(T
n

))
for any clustering algorithm. As a consequence, a necessary condition for the existence of a
clustering algorithm misclassifying a vanishing proportion of states in average, i.e., such that
EP [ |E|n ] = o(1), is T = ω(n). Similarly, a necessary condition for the existence of an asymptotically
exact clustering algorithm, i.e., such that EP [|E|] = o(1), is T = ω(n lnn).

The proof of Theorem 1 relies on a change-of-measure argument, and on relating the probability
of misclassifying a state in the BMC to a log-likelihood ratio that the sample path was generated
by a perturbed Markov chain instead. The key challenge is to construct the appropriate change-
of-measures and perturbed Markov chains, which is discussed in detail in Section 4.

Result (Theorems 2, 3). If I(α, p) > 0, if ∃0<η 6=1 : maxa,b,c=1,...,K{pb,a/pc,a, pa,b/pa,c} ≤ η,
‖N̂ − N‖ = OP(f(n, T )) for some f(n, T ) = o(T/n), and if ‖P̂ − P‖ = OP(g(n, T )) for some
g(n, T ) = o(1), then there exists a clustering algorithm that misclassifies |E| = oP(1) states.

Our proofs of Theorems 2, 3 are constructive, in that we create actual clustering procedures
and perform asymptotic analyses of their performances. As we explained in the introduction,
we have developed a two-step clustering procedure. First, our Spectral Clustering Algorithm
roughly clusters most states accurately (Algorithm 1). Next, this approximate assignment is
recursively used to obtain improved cluster assignments using our Cluster Improvement Algorithm
(Algorithm 2). Their asymptotic behaviors are analyzed in Sections 5–6, and simulation results
of their performance can be found in Section 7.

Input: A trajectory X0, X1, . . . , XT
Output: An approximate cluster assignment V̂ [0]

1 , . . . , V̂ [0]
K , and matrices P̂ , N̂

1 begin
2 for x← 1 to n do
3 for y ← 1 to n do
4 N̂x,y ←

∑T−1
t=0 1[Xt = x,Xt+1 = y];

5 P̂x,y ←
(∑T−1

t=0 1[Xt = x,Xt+1 = y]
)
/
(∑T−1

t=0 1[Xt = x]
)
;

6 end
7 end
8 Calculate the Singular Value Decomposition (SVD) UΣV T of either P̂ or N̂ ;
9 Order U,Σ, V s.t. the singular values σ1 ≥ σ ≥ . . . ≥ σn ≥ 0 are in descending order;

10 Construct the rank-K approximation R̂ =
∑K

k=1 σkU·,kV·,k
T;

11 Apply a K-means algorithm to R̂ to determine V̂ [0]
1 , . . . , V̂ [0]

K ;
12 end

Algorithm 1: Pseudo-code for the Spectral Clustering Algorithm.

4. The information bound and the change of measure. In this section, we prove
Theorem 1. As a consequence of this result, a necessary condition for the existence of a clustering
algorithm that misclassifies EP [|E|] = o(s) vertices is T = ω(n ln (n/s)).

Theorem 1. If I(α, p) > 0, then there exist strictly positive and finite constant C independent
of n such that: for any clustering algorithm

EP
[ |E|
n

]
≥ C exp

(
− J(α, p)T

n
+ o

(T
n

))
,
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8 J. SANDERS AND A. PROUTIÈRE

Input: An approximate cluster assignment V̂ [t]
1 , . . . , V̂ [t]

K , and matrices P̂ , N̂
Output: A revised assignment V̂ [t+1]

1 , . . . , V̂ [t+1]
K

1 begin
2 for a← 1 to K do
3 π̂a ← N̂V̂[t]

a ,V/T , αa ← |V̂
[t]
a |/n, V̂ [t+1]

a ← ∅;
4 for b← 1 to K do
5 p̂a,b ← (|V̂ [t]

b | − 1[a = b])P̂V̂[t]
a ,V̂[t]

b

/(|V̂ [t]
a ||V̂ [t]

b |);

6 end
7 end
8 for x← 1 to n do
9 copt

x ← arg maxc=1,...,K

{∑K

k=1

(
N̂
x,V̂[t]

k

ln p̂c,k + N̂V̂[t]
k
,x

ln p̂k,c

α̂c

)
− T

n
· π̂c
α̂c

}
;

10 V [t+1]
c

opt
x

← V [t+1]
c

opt
x

∪ {x};
11 end
12 end

Algorithm 2: Pseudo-code for the Cluster Improvement Algorithm.

where

0 < J(α, p) , min
k 6=l

min
q∈Q(k,l)

( αk
αk + αl

Ik(q||p) + αl
αk + αl

Il(q||p)
)
<∞.

Here

(6) Ic(q||p) ,
K∑
k=1

(( K∑
l=1

πlql,0
)
q0,k ln q0,k

pc,k
+ πkqk,0 ln qk,0αc

pk,c

)
+
(πc
αc
−

K∑
k=1

πkqk,0
)

for c = 1, . . . ,K, and

Q(k, l) ,
{
q ∈ Q

∣∣Ik(q||p) = Il(q||p)
}
6= ∅ for all k 6= l,

Q ,
{
(qk,0, q0,k)k=0,...,K ∈ (0,∞)

∣∣q0,0 = 0,
K∑
l=1

q0,l = 1
}
.(7)

4.1. Change-of-measure argument. We now proceed with the change-of-measure argument.
It consists in considering that the observations X0, . . . , XT are generated by a slightly different
stochastic model than the true model defined by the clusters and the transition matrix P . We
denote by Φ (resp. by Ψ) the true (resp. modified) model, and by PΦ (resp. by PΨ) the probability
measure corresponding to Φ (resp. Ψ). The modified model is obtained by randomly choosing a
state V ∗ (this choice will be made precise later on) and by constructing a transition matrix Q
depending on V ∗ that is slightly different from P .

Given a sample path X0, X1, . . . , XT ∈ V, the argument revolves around the quantity

(8) L , ln PQ[X0, X1, . . . , XT ]
PP [X0, X1, . . . , XT ]

which resembles a log-likelihood ratio. Here,

PP [X0, X1, . . . , XT ] =
T∏
t=1

PXt−1,Xt , and PQ[X0, X1, . . . , XT ] =
T∏
t=1

QXt−1,Xt

such that L =
∑T
t=1 ln

(
QXt−1,Xt/PXt−1,Xt

)
. Note that L is random because it depends on the

observations, but also on V ∗. We now prove the following information bound.
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OPTIMAL CLUSTERING ALGORITHMS IN BMCS 9

Proposition 3. If V ∗ is chosen uniformly at random from two clusters a 6= b, and if

(9) ∃ an absolute constant δ s.t. PΨ[V ∗ ∈ E ] ≥ δ > 0 for any classification algorithm,

then there exists a strictly positive constant C > 0 independent of n such that

(10) EΦ[|E|]
n

≥ C exp
(
−EΨ[L]−

√
2
δ

√
VarΨ[L]

)
for any clustering algorithm.

Proof. Select a state V ∗ uniformly at random from any two specific clusters a, b ∈ {1, . . . ,K},
a 6= b. We are going to bound

(11) PΨ[L ≤ f(n, T )] = PΨ[L ≤ f(n, T ), V ∗ ∈ E ] + PΨ[L ≤ f(n, T ), V ∗ 6∈ E ].

for any function f : N2
+ → R.

The first term of (11) can be bounded using our change of measure formula (8). Namely,

PΨ[L ≤ f(n, T ), V ∗ ∈ E ]
(8)
≤ ef(n,T )PΦ[L ≤ f(n, T ), V ∗ ∈ E ] ≤ ef(n,T )PΦ[V ∗ ∈ E ].(12)

Because V ∗ is selected from Va∪Vb uniformly at random, we have by Lemma 13, see Appendix A,
that for any V selected uniformly at random from all vertices V,

PΦ[V ∗ ∈ E ] = PΦ[V ∈ E|V ∈ Va ∪ Vb] = PΦ[V ∈ E , V ∈ Va ∪ Vb]
PΦ[V ∈ Va ∪ Vb]

≤ PΦ[V ∈ E ]
αa + αb

.

Subsequently by Lemma 14, see Appendix A,

(13) PΦ[V ∗ ∈ E ] ≤ EΦ[|E|]
(αa + αb)n

.

Substituting (13) into (12), we obtain

(14) PΨ[L ≤ f(n, T ), V ∗ ∈ E ] ≤ ef(n,T ) EΦ[|E|]
(αa + αb)n

.

The second term of (11) can be bounded using Assumption (9):

PΨ[L ≤ f(n, T ), V ∗ 6∈ E ] ≤ PΨ[V ∗ 6∈ E ] = 1− PΨ[V ∗ ∈ E ] ≤ 1− δ < 1.(15)

Now using (14) and (15) to bound (11), we arrive at

(16) PΨ[L ≤ f(n, T )] ≤ ef(n,T ) EΦ[|E|]
(αa + αb)n

+ 1− δ

with δ > 0. This strict separation will become important in a moment.
We now prepare for an application of Chebyshev’s inequality. First note using (16) that

PΨ[L ≥ f(n, T )] = 1− PΨ[L ≤ f(n, T )] ≥ δ − ef(n,T ) EΦ[|E|]
(αa + αb)n

.

Specify f(n, T ) = ln
(
δ/2

)
+ ln

(
(αa + αb)n/EΦ[|E|]

)
, so that

PΨ
[
L ≥ ln δ2 + ln (αa + αb)n

EΦ[|E|]
]
≥ δ

2 .
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10 J. SANDERS AND A. PROUTIÈRE

Since δ > 0, we can apply (i) Chebyshev’s inequality to conclude

PΨ
[
L ≥ EΨ[L] +

√
2
δ

√
VarΨ[L]

] (i)
≤ δ

2
(4.1)
≤ PΨ

[
L ≥ ln δ2 + ln (αa + αb)n

EΦ[|E|]
]
.

Comparing the events in the left member and the right member, we then must have

ln δ2 + ln (αa + αb)n
EΦ[|E|] ≤ EΨ[L] +

√
2
δ

√
VarΨ[L].

Rearranging gives (10) with C = (αa + αb)δ/2 > 0. This completes the proof.

In order to further lower bound EΦ[|E|], we proceed by constructing a change of measure that
satisfies condition (9), and we then calculate the leading order behavior of EΨ[L|σ(V ∗)] and
upper bound VarΨ[L|σ(V ∗)].

4.2. The perturbed BMC given V ∗ and q ∈ Q. We now construct a transition matrix Q that
resembles P , but differs in that V ∗ is placed in its own cluster with its own specific intra-cluster
jump rates. We will label this extra cluster by 0 to indicate its special status. Asymptotically
Q will resemble P as we are going to move probability mass away from and towards the other
entries. While most entries will individually be perturbed slightly only, we still need to carefully
analyze their collective contribution as this will be significant.

Define

(17) qk,l , pk,l −
qk,0
Kn

for k, l = 1, . . . ,K,

and assume that n > dmaxk,l=1,...,K{qk,0/(Kpk,l)}e so that the entries of (17) are strictly positive.
This assumption is not restrictive because the right-hand side is independent of n and finite. Note
that the collection {qk,l}k,l∈{0,1,...,K} does not constitute a stochastic matrix, but does resemble
the transition matrix p for sufficiently large n. Now define component-wise

(18) Qx,y ,
qω(x),ω(y)1[x 6= y]

|Wω(y)| − 1[ω(x) = ω(y)] , Qx,V ∗ ,
qω(x),0
n

for x ∈ V, y 6= V ∗,

where

ω(x) ,
{

0 if x = V ∗,

σ(x) if x 6= V ∗,
and Wk ,

{
{V ∗} if k = 0,
Vk\{V ∗} if k = 1, . . . ,K,

for notational convenience. This has the added benefit of giving (18) a similar form as (1).
Q is by construction a stochastic matrix (see Appendix D). Note furthermore that because Q

is constructed from P , which by assumption describes an irreducible Markov chain, and because
the entries (qk,0, q0,k)k=1,...,K are all strictly positive, Q also describes an irreducible Markov
chain.

4.2.1. Asymptotic behavior of the equilibrium distribution. Let Π(Q) denote the equilibrium
distribution of a Markov chain with transition matrix Q, i.e., the solution to Π(Q)TQ = Π(Q)T.
By symmetry of states in the same cluster Π(Q)

x = Π(Q)
y , Π̄(Q)

k for any two states x, y ∈ Wk and
all k ∈ {1, . . . ,K, 0}. Define

(19) γ
[0]
k , lim

n→∞

∑
x∈Wk

Π(Q)
x = lim

n→∞
|Wk|Π̄

(Q)
k for k ∈ {0, 1, . . . ,K}.

We can expect γ[0]
0 to be zero, because by our construction of Q we can expect that Π(Q)

x = O(1/n)
for all x ∈ V (including V ∗). We therefore also define its higher order statistic

γ
[1]
0 , lim

n→∞
nΠ(Q)

V ∗ .
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The following proposition relates these scaled quantities to the parameters of our BMC {Xt}t≥0.
The proof is deferred to Appendix E.

Proposition 4. For k = 1, . . . ,K, γ[0]
k = πk. Furthermore, γ[0]

0 = 0 and γ[1]
0 =

∑K
k=1 πkqk,0.

4.2.2. Mixing time. We now crucially note that Proposition 2 holds for a Markov chain with
Q as its transition matrix as well. This follows when applying the exact same proof.

Example. It is illustrative to explicitly write down at least one example kernel Q. For K = 3,
α = (2/10, 3/10, 5/10) and n = 10, V ∗ = 7, it is given by

Q =



0 p1,1
p1,2

3
p1,2

3
p1,2

3
p1,3

4
q1,0
10

p1,3
4

p1,3
4

p1,3
4

p1,1 0 p1,2
3

p1,2
3

p1,2
3

p1,3
4

q1,0
10

p1,3
4

p1,3
4

p1,3
4

p2,1
2

p2,1
2 0 p2,2

2
p2,2

2
p2,3

4
q2,0
10

p2,3
4

p2,3
4

p2,3
4

p2,1
2

p2,1
2

p2,2
2 0 p2,2

2
p2,3

4
q2,0
10

p2,3
4

p2,3
4

p2,3
4

p2,1
2

p2,1
2

p2,2
2

p2,2
2 0 p2,3

4
q2,0
10

p2,3
4

p2,3
4

p2,3
4

p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3 0 q3,0

10
p3,3

3
p3,3

3
p3,3

3
q0,1

2
q0,1

2
q0,2

3
q0,2

3
q0,2

3
q0,3

4 0 q0,3
4

q0,3
4

q0,3
4

p3,1
2

p3,1
2

p3,2
3

p3,2
3

p3,2
3

p3,3
3

q3,0
10 0 p3,3

3
p3,3

3
p3,1

2
p3,1

2
p3,2

3
p3,2

3
p3,2

3
p3,3

3
q3,0
10

p3,3
3 0 p3,3

3
p3,1

2
p3,1

2
p3,2

3
p3,2

3
p3,2

3
p3,3

3
q3,0
10

p3,3
3

p3,3
3 0



− 1
3 · 10



0 q1,0
q1,0

3
q1,0

3
q1,0

3
q1,0

4 0 q1,0
4

q1,0
4

q1,0
4

q1,0 0 q1,0
3

q1,0
3

q1,0
3

q1,0
4 0 q1,0

4
q1,0

4
q1,0

4
q2,0

2
q2,0

2 0 q2,0
2

q2,0
2

q2,0
4 0 q2,0

4
q2,0

4
q2,0

4
q2,0

2
q2,0

2
q2,0

2 0 q2,0
2

q2,0
4 0 q2,0

4
q2,0

4
q2,0

4
q2,0

2
q2,0

2
q2,0

2
q2,0

2 0 q2,0
4 0 q2,0

4
q2,0

4
q2,0

4
q3,0

2
q3,0

2
q3,0

3
q3,0

3
q3,0

3 0 0 q3,0
3

q3,0
3

q3,0
3

0 0 0 0 0 0 0 0 0 0
q3,0

2
q3,0

2
q3,0

3
q3,0

3
q3,0

3
q3,0

3 0 0 q3,0
3

q3,0
3

q3,0
2

q3,0
2

q3,0
3

q3,0
3

q3,0
3

q3,0
3 0 q3,0

3 0 q3,0
3

q3,0
2

q3,0
2

q3,0
3

q3,0
3

q3,0
3

q3,0
3 0 q3,0

3
q3,0

3 0


.(20)

Here, we have indicated the original cluster structure in dashed lines, and we have colored the
row and column corresponding to the modified cluster behavior of state V ∗. Comparing (20) to
(4) helps understanding how Q is constructed and how Q compares to P . Note in particular the
minor changes in the normalizations of all entries.

4.3. Leading order behavior of EQ[L|σ(V ∗)].

Proposition 5. For any given V ∗ ∈ V and q ∈ Q, it holds that

EQ[L|σ(V ∗)] = T

n
Iσ(V ∗)(q||p) + o

(T
n

)
.

Here, Iσ(V ∗)(q||p) is defined in (6).

Proof. Define Rx,y , ln (Qx,y/Px,y) for notational convenience: we refer to Appendix F for
its asymptotic behavior. Since the Markov chain is started from equilibrium,

(21) EQ[L|σ(V ∗)] = T
∑
x∈V

∑
y∈V

Π(Q)
x Qx,y lnRx,y.

The largest individual contributions to the expectation in (21) are by jumps to and from V ∗,
since this is where the change of measure is modified most. Jumps not involving V ∗ contribute
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12 J. SANDERS AND A. PROUTIÈRE

less individually, but there are many of such jumps. We therefore separate out the jumps to and
from V ∗, i.e.,
(22)
EQ[L|σ(V ∗)]

T
=
∑
y 6=V ∗

Π(Q)
V ∗ QV ∗,y lnRV ∗,y +

∑
x 6=V ∗

Π(Q)
x Qx,V ∗ lnRx,V ∗ +

∑
x,y 6=V ∗

Π(Q)
x Qx,y lnRx,y.

We now calculate the leading order behavior of each term.
For the first term in (22) we have by (i) Lemma 16 in Appendix F and Q’s definition, see (18),

and (ii) Proposition 4,

∑
y 6=V ∗

Π(Q)
V ∗ QV ∗,y lnRV ∗,y

(i)∼
K∑
k=1

∑
y∈Wk

Π(Q)
V ∗

q0,k
|Wk|

ln
q0,ω(y)

pσ(V ∗),ω(y)

(ii)∼ 1
n

K∑
k=1

γ
[1]
0 q0,k ln q0,k

pσ(V ∗),k
.(23)

The second term in (22) handles similarly:

∑
x 6=V ∗

Π(Q)
x Qx,V ∗ lnRx,V ∗

(i)∼
K∑
k=1

∑
x∈Wk\{V ∗}

Π̄(Q)
k

qk,0
n

ln
qk,0ασ(V ∗)
pk,σ(V ∗)

(ii)∼ 1
n

K∑
k=1

γ
[0]
k qk,0 ln

qk,0ασ(V ∗)
pk,σ(V ∗)

.

The third term in (22) requires (iii) a Taylor expansion of ln (1 + x) = x+O(x2) for x ≈ 0 and
(iv) the balance equations (61)–(62), so that

∑
x,y 6=V ∗

Π(Q)
x Qx,y lnRx,y

(iii)∼
∑
k,l 6=0

∑
x∈Wk

∑
y∈Wl\{x}

Π̄(Q)
k

qk,l
|Wl| − 1[k = l] ·

1
n

(1[l = σ(V ∗)]
αl

− qk,0
pk,lK

)
(17)∼ 1

n

K∑
k=1

γ
[0]
k

(qk,σ(V ∗)
ασ(V ∗)

−
K∑
l=1

1
K
qk,0

) (iv)= 1
n

( γ[0]
σ(V ∗)
ασ(V ∗)

− γ[1]
0

)
.(24)

Substituting (23)–(24) into (22) gives

EQ[L|σ(V ∗)] ∼ T

n

K∑
k=1

(
γ

[1]
0 q0,k ln q0,k

pσ(V ∗),k
+ γ

[0]
k qk,0 ln

qk,0ασ(V ∗)
pk,σ(V ∗)

)
+ T

n

( γ[0]
σ(V ∗)
ασ(V ∗)

− γ[1]
0

)
.

By now applying Proposition 4, we complete the proof.

4.4. Asymptotic negligibility of VarQ[L|σ(V ∗)].

Proposition 6. For any given V ∗ ∈ V and q ∈ Q, it holds that if T = ω(1), then

VarQ[L|σ(V ∗)] = O
(T lnT

n

)
.

As a consequence if T = ω(n), then VarQ[L|σ(V ∗)] = o(T 2/n2).

Proof. Define Lt , ln (QXt−1,Xt/PXt−1,Xt). Expanding, we obtain

(25) VarQ[L|σ(V ∗)] = VarQ
[ T∑
t=1

Lt
∣∣∣σ(V ∗)

]
=

T∑
t=1

T∑
s=1

CovQ[Lt, Ls|σ(V ∗)].

We now consider the cases |t− s| ≥ 2 and |t− s| ≤ 1, in that order. The idea is that we bound
relatively crudely in the latter cases since there are only O(T ) such terms that contribute to the
sum, and the former cases more sharply. Applying one rough bound on all terms of the former
cases would not suffice, because there are as many as O(T 2) such terms. As we will show for
the former cases, we can derive a sharper bound when |t− s| � tmix(ε) because Proposition 2
implies that the covariances decay quickly.
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First note that because (i) the process is started from equilibrium, we have for any t, s ∈
{1, . . . , T} that

CovQ[Lt, Ls|σ(V ∗)] = EQ[LtLs|σ(V ∗)]− EQ[Lt|σ(V ∗)]EQ[Ls|σ(V ∗)]
(i)= EQ[LtLs|σ(V ∗)]− EQ[Lt|σ(V ∗)]2.(26)

Now consider the case |t−s| ≥ 2. Define Sx,y,u,v , (lnRx,y)(lnRu,v) for notational convenience:
we refer to Appendix F for its asymptotic behavior. In this case the first term of (26) evaluates
as

EQ[LtLs|σ(V ∗)] =
∑

x,y,u,v

PQ[Xt∧s−1 = x,Xt∧s = y,Xt∨s−1 = u,Xt∨s = v|σ(V ∗)]Sx,y,u,v

=
∑

x,y,u,v

Π(Q)
x Qx,y

( ∑
zt∧s+1,...,zt∨s−2

Qy,zt∧s+1Qzt∧s+2,zt∧s+2 · · ·Qzt∨s−2,u

)
Qu,vSx,y,u,v

=
∑

x,y,u,v

Π(Q)
x Qx,yQ

|t−s|−1
y,u Qu,vSx,y,u,v.(27)

The second term of (26) expands as

(28) EQ[Lt|σ(V ∗)]2 =
(∑
x,y

Π(Q)
x Qx,y ln Qx,y

Px,y

)2
=

∑
x,y,u,v

Π(Q)
x Qx,yΠ(Q)

u Qu,vSx,y,u,v.

Substituting (27) and (28) into the last member of (26) gives

(29) CovQ[Lt, Ls|σ(V ∗)] =
∑

x,y,u,v

Π(Q)
x Qx,y

(
Q|t−s|−1
y,u −Π(Q)

u

)
Qu,vSx,y,u,v.

In order to bound (29), we need to take two effects into consideration: a filter effect that
happens because the transition matrix Q is similar to the transition matrix P , and a concentration
effect because the Markov chain moves closer to equilibrium as time progresses. The filter effect is
quantified by Corollary 1 in Appendix F, because the latter implies that

∑
x,y,u,v Sx,y,u,v ≤ c1n

2

for some absolute constant c1 (even though
∑
x,y,u,v 1 = n4). We can use the effect by for example

bounding Π(Q)
x Qx,y

(
Qmy,u −Π(Q)

u
)
Qu,v ≤ c2/n

4 uniformly using another absolute constant, and
then concluding that CovQ[Lt, Ls|σ(V ∗)] ≤ c2(T 2/n4)

∑
x,y,u,v Sx,y,u,v ≤ c1c2T

2/n2. However,
this bound is not sufficiently sharp for our purposes: we need to provide a bound that is at least
o(T 2/n2).

To arrive at a sharper bound, we use the concentration of the Markov chain. Apply the triangle
inequality first, and then bound Π(Q)

x Qx,yQu,v ≤ c1/n
3 uniformly using an absolute constant c1

to obtain

∣∣∣ T∑
t=1

T∑
s=1

1[|t− s| ≥ 2]CovQ[Lt, Ls|σ(V ∗)]
∣∣∣ ≤ 2c1

n3

T∑
t=1

T∑
s=t+2

∑
x,y,u,v

∣∣Q|t−s|−1
y,u −Π(Q)

u

∣∣|Sx,y,u,v|.(30)

Now let m ∈ N+. By nonnegativity of the summands and (3), |Qmx,y−Π(Q)
y | ≤

∑
y |Qmx,y−Π(Q)

y | =
d1(Qmx,·,Π(Q)). Note furthermore that Lemma 15, see Appendix B, implies that there exists an
absolute constant c2 so that d1(µ, ν) ≤ c2d2(µ, ν) for any two probability distributions µ, ν. This
implies that we have |Qmx,y −Π(Q)

y | ≤ c2d2(Qmx,·,Π(Q)) for all x, y ∈ V. Recalling (2), it therefore
follows after maximization over x ∈ V that

(31) |Qmx,y −Π(Q)
y | ≤ c2d(m) for all x, y ∈ V and m ∈ N+.
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14 J. SANDERS AND A. PROUTIÈRE

Using (31) to bound the r.h.s. in (30), we obtain

∣∣∣ T∑
t=1

T∑
s=1

1[|t− s| ≥ 2]CovQ[Lt, Ls|σ(V ∗)]
∣∣∣ ≤ 2c1c2

n3

T∑
t=1

T∑
s=t+2

d(|t− s| − 1)
∑

x,y,u,v

|Sx,y,u,v|

(ii)
≤ c3

T

n

T∑
m=1

d(m),(32)

with c3 > 0 an absolute constant. Here we have (ii) used the filter effect and extended the
summation range, which is valid since d(m) ≥ 0 for all m ∈ N+.

We now split the sum according to the mixing time. That is, for some absolute constant c4 > 0

T∑
m=1

d(m) =
tmix(ε)∑
m=1

d(m) +
T∑

m=tmix(ε)+1
d(m)

(iii)
≤ c4tmix(ε) + Tε.(33)

To obtain the inequality in (33) we used the facts (iii) that d(m) is nonincreasing in m ∈ N+ [2],
that for all x ∈ V

d2(Qx,·,Π(Q)) (3)=
(∑
y∈V

(Qx,y −Π(Q)
y )2

Π(Q)
y

)1/2
≤ 1√

Π(Q)
min

(∑
y∈V

O
( 1
n2

))1/2
= O(1)

so that there exists an absolute constant such that d(1) ≤ c4, and that tmix is such that
d(t) ≤ ε for all t ≥ tmix. By Proposition 2, there exists an absolute cmix > 0 such that
tmix(ε) ≤ −cmix ln ε. After substituting (33) into (32) and then minimizing over ε, giving the
optimal choice ε = c4cmix/T , we obtain

(34)
∣∣∣ T∑
t=1

T∑
s=1

1[|t− s| ≥ 2]Cov[Lt, Ls]
∣∣∣ ≤ c3

T

n

(
c5 lnT − c5 ln c5 + c5

)
= O

(T
n

lnT
)
,

where c5 = c4cmix > 0 is again an absolute constant.
Lastly we deal with the cases |t− s| ≤ 1. When |t− s| = 0, or equivalently t = s, we have that

(iv) because of Lemma 16 and Corollary 1 that there exist absolute constants c6, . . . , c9 such that

Cov[Lt, Lt|σ(V ∗)]
(26)
≤ EQ[L2

t |σ(V ∗)] =
∑
x∈V

∑
y∈V

Π(Q)
x Qx,y(lnRx,y)2

(iv)
≤ Π(Q)

V ∗

∑
y 6=V ∗

QV ∗,yc6 +
∑
x 6=V ∗

Π(Q)
x Qx,V ∗c7 +

∑
x 6=V ∗

∑
y 6=V ∗

Π(Q)
x Qx,y

c8
n2 ≤

c9
n

for all t = 1, . . . , T . Therefore

(35)
∣∣∣ T∑
t=1

T∑
s=1

1[|t− s| = 0]CovQ[Lt, Ls|σ(V ∗)]
∣∣∣ =

T∑
t=1

VarQ[Lt|σ(V ∗)] = O
(T
n

)
.

When |t− s| = 1, there exists an absolute constant c10 > 0 such that

CovQ[Lt∧s, Lt∧s+1|σ(V ∗)]
(26)
≤ EQ[Lt∧sLt∧s+1|σ(V ∗)] ≤

∑
x,y,z

Π(Q)
x Qx,yQy,zSx,y,y,z

≤ c10
n3

∑
x,y,z

Sx,y,y,z.

Invoking Corollary 1’s filter effect implies that
∑
x,y,z Sx,y,y,z = O(n2). Therefore

(36)
∣∣∣ T∑
t=1

T∑
s=1

1[|t− s| = 1]Cov[Lt, Ls|σ(V ∗)]
∣∣∣ ≤ 2

T∑
t=1
|CovQ[Lt, Lt+1|σ(V ∗)]| = O

(T
n

)
.
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Splitting (25) into the respective cases and then (v) substituting (34), (35), and (36) gives

VarQ[L|σ(V ∗)] =
T∑
t=1

T∑
s=1

(1[|t− s| = 0] + 1[|t− s| = 1] + 1[|t− s| ≥ 2])CovQ[Lt, Ls|σ(V ∗)]

(v)= O
(T
n

lnT
)
,

which completes the proof.

4.5. Appropriateness, deconditioning, and bound optimization. Recall that the transition
matrix Q is constructed given a state V ∗ ∈ V. This implies in particular that Proposition 5
and Proposition 6 have determined the asymptotic behavior of the conditional expectation
EQ[L|σ(V ∗)] and conditional variance VarQ[L|σ(V ∗)]. The information bound Proposition 3
requires us however to analyze their unconditioned counterparts, which is the subject of this
section. Importantly, we can limit the variance introduced by a random state selection by choosing
q ∈ Q appropriately.

4.5.1. Appropriateness.

Lemma 1. If I(α, p) > 0, then for any two clusters a 6= b there exists at least one finite point
q̄ ∈ Q such that Ia(q̄||p) = Ib(q̄||p). Furthermore, for any such q̄ it holds that 0 < Ia(q̄||p) =
Ib(q̄||p) <∞.

Proof. Consider the points

qc =
(p1,c
αc

, . . . ,
pK,c
αc

; pc,1, . . . , pc,K ; 0
)
∈ Q where c ∈ {1, . . . ,K}.

Let a 6= b. The points qa, qb have the following properties: (i) Ia(qa||p) = Ib(qb||p) = 0, and (ii)
I(α, p) ≤ Ia(qb||p) <∞ and I(α, p) ≤ Ib(qa||p) <∞ by definition of I(α, p). Together with the
continuity of Ic(q||p) w.r.t. q ∈ Q, this implies that there exists a λ ∈ (0, 1) such that

Ia(λqa + (1− λ)qb||p) = Ib(λqa + (1− λ)qb||p).

This establishes the existence.
Next we prove the second claim of the lemma. Recall that

EQ[L|σ(V ∗)] =
∑

all sample paths χ
PQ[χ|σ(V ∗)] ln PQ[χ|σ(V ∗)]

PP [χ]

is a KL-divergence. As a consequence, EQ[L] = 0 if and only if

PQ[χ|σ(V ∗)] =
T∏
t=1

Qxt−1,xt =
T∏
t=1

Pxt−1,xt = PP [χ] for all sample paths χ.

Equivalently EQ[L|σ(V ∗)] = 0 if and only if Qx,y = Px,y for all x, y ∈ V, which can be seen by
considering the set of paths that disagree only on the last jump. Since

Iσ(V ∗)(q||p) = lim
n→∞

n

T

(
EQ[L|σ(V ∗)] + o(1)

)
,

we obtain that Iσ(V ∗)(q||p) = 0 if and only if q = qσ(V ∗). Since Ia(qa||p) = 0 and Ib(qa||p) ≥
I(α, p) > 0 by definition of I(α, p), it must be that for any q̄ such that Ia(q̄||p) = Ib(q̄||p), it
holds that q̄ 6= qa, qb. This completes the proof.
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16 J. SANDERS AND A. PROUTIÈRE

Note that we do not upper bound Ia(q̄||p) or Ib(q̄||p) by I(α, p). While we believe that such a
strong statement may indeed hold, proving this would require the use of additional monotonicity-
like properties. For example, if it can be established that Ic(q||p) is quasiconvex in q, one could
try to leverage this fact. Establishing such a property however proved elusive to us, and we were
able to establish that Ic(q||p) is not convex in q.

We now prove that the change of measure Ψ satisfies condition (9).

Lemma 2. For any two clusters a 6= b, if Q is constructed using any q̄ ∈ Q(a, b), recall its
definition in (7), then there exists an absolute constant δ such that PΨ[V ∗ ∈ E ] ≥ δ > 0.

Proof. Let a 6= b denote any two distinct clusters, and construct Q using some q̄ ∈ Q(a, b).
By (i) the law of total probability,

PΨ[V ∗ ∈ E ] = 1− PΨ[V ∗ 6∈ E ] (i)= 1−
∑
c=a,b

αc
αa + αb

PQ[V ∗ ∈ V̂γ(c)|σ(V ∗) = c].

Since qa, qb 6∈ Q(a, b), the state V ∗ behaves differently than any state in either cluster a or b.
We must therefore have 0 ≤ PQ[V ∗ ∈ V̂γ(c)|σ(V ∗) = c] < 1 for c = a, b. When x, y ∈ [0, 1],
αax + αby = αa + αb if and only if x, y = 1. This implies that there exists a δ > 0 such that
PΨ[V ∗ ∈ E ] ≥ δ > 0. This completes the proof.

It is important to note that given a 6= b and q̄ ∈ Q(a, b) with which Q is constructed, it
need not be that e.g. PQ[V ∗ ∈ V̂a|σ(V ∗) = a] equals PQ[V ∗ ∈ V̂a|σ(V ∗) = b] for any clustering
algorithm when n is finite. This is because the rows of the transition matrix are normalized. In
particular, depending on which cluster V ∗ originated from, the transition probabilities from/to
the originating cluster differ on the order of O(1/n2).

4.5.2. Deconditioning. We now revisit Proposition 3 to account for the specific choices made
in the change-of-measure.

Lemma 3. If T = ω(n), then for any two clusters a 6= b, there exists a strictly positive
constant c > 0 independent of n such that

(37) EP [|E|]
n

≥ c exp
(
−T
n
Ia,b(q̄||p) + o

(T
n

))
.

Here,

Ia,b(q̄||p) = αa
αa + αb

Ia(q̄||p) + αb
αa + αb

Ib(q̄||p)

for any point q̄ selected from the set Q(a, b).

Proof. Let a 6= b be any two distinct clusters. Choose q = q̄ ∈ Q(a, b) such that Ia(q̄||p) =
Ib(q̄||p) , Ia,b(q̄||p) ∈ (0,∞). This is possible by Lemma 1. Select V ∗ uniformly at random in
Va ∪ Vb. Then by (i) the law of total probability and (ii) Proposition 5

EΨ[L] (i)= αa
αa + αb

EQ[L|σ(V ∗) = a] + αb
αa + αb

EQ[L|σ(V ∗) = b] (ii)= T

n
Ia,b(p) + o

(T
n

)
.

By (iii) the law of total variance Var[X] = EY [Var[X|Y ]] + VarY [E[X|Y ]], we have

VarΨ[L] (iii)= αa
αa + αb

VarQ[L|σ(V ∗) = a] + αb
αa + αb

VarQ[L|σ(V ∗) = b]

+ αa
αa + αb

(
EQ[L|σ(V ∗) = a]− EΨ[L]

)2
+ αb
αa + αb

(
EQ[L|σ(V ∗) = b]− EΨ[L]

)2 (iv)= o
(T 2

n2

)
,

where for (iv) we have used Proposition 6 for the first two terms, and the fact that q̄ ∈ Q(a, b)
guarantees that Ia(q̄||p) = Ib(q̄||p) for the last two terms.

imsart-aap ver. 2014/10/16 file: J_Sanders__A_Proutiere__OCABMC__arXiv_version.tex date: December 27, 2017



OPTIMAL CLUSTERING ALGORITHMS IN BMCS 17

4.5.3. Bound optimization. We finally optimize the bound in (37). This is straightforward:
build the change of measure using the parameters

(kopt, lopt, qopt) ∈ arg min
k 6=l

min
q∈Q(k,l)

{ αk
αk + αl

Ik(q||p) + αl
αk + αl

Il(q||p)
}
.

Then by construction

EΨ[L] = T

n
J(α, p) + o

(T
n

)
,

and since qopt ∈ Q(kopt, lopt), we have 0 < J(α, p) <∞. This completes the proof of Theorem 1.

5. The Spectral Clustering Algorithm. The Spectral Clustering Algorithm, whose
pseudo-code is presented in Algorithm 1, aims at providing good first estimates of the clusters,
and works as follows. First we observe a finite trajectory X0, X1, . . . , XT of the Markov chain,
where T ∈ N0. We then calculate the empirical kernels P̂ ∈ ∆∆(n−1)×n, an approximation of the
transition matrix P , element-wise as

P̂x,y ,

∑T−1
t=0 1[Xt = x,Xt+1 = y]∑T−1

t=0 1[Xt = x]
for x, y ∈ V.

Note that because P̂ is constructed from a finite trajectory of a Markov chain, its elements are
not independent. We also calculate the matrix

N̂x,y ,
T−1∑
s=0

1[Xs−1 = x,Xs = y] for x, y ∈ V,

and write their expectations as Nx,y = E[N̂x,y] for x, y ∈ V.
Next we construct a rank-K approximation R̂ of P̂ , or of N̂ (one may choose), from its singular

value decomposition P̂ = UΣV T. Specifically, we define

R̂ =
K∑
k=1

σkU·,kV·,k
T,

where the values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 denote the singular values of P̂ in decreasing order.
We apply a clustering algorithm to these basis vectors to determine the clusters. While in

practice you may choose to use a different algorithm, for the analysis we use the following: first
we calculate the neighborhoods

Nx ,
{
y ∈ V

∣∣‖R̂x,· − R̂y,·‖2 ≤ h(n, T )
}

for x ∈ V.

Then we initialize V̂k ← ∅ for k = 0, 1, . . . ,K and select K centers z∗1 , . . . , z∗K ∈ V with which we
construct approximate clusters. Specifically, we iterate

(38) V̂k ← Nz∗
k
\
{
∪k−1
l=0 V̂l

}
where z∗k , arg max

x∈V
|Nx\

{
∪k−1
l=0 V̂l

}
|

for k = 1, . . .K. Any remaining state is finally associated to the center closest to it, i.e., we
iterate for y ∈ {∪Kk=1V̂k}c

(39) V̂k∗y ← V̂k∗y ∪ {y} with k∗y , arg min
k=1,...,K

‖R̂z∗
k
,· − R̂y,·‖2.

Finally, we output V̂ [0]
k = V̂k for k = 1, . . . ,K.

Theorem 2 gives an upper bound on the number of misclassified states after the Spectral
Clustering Algorithm has been applied. Given a desired level of accuracy, Theorem 2 can provide
sufficient conditions on α, p, n, T that guarantee the Spectral Clustering Algorithm achieves a
desired level of accuracy.
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18 J. SANDERS AND A. PROUTIÈRE

Theorem 2. If ‖P̂ − P‖ = oP(g(n, T )) for some g(n, T ) = o(1) and h(n, T ) is chosen such
that ω(g2/n) = h2 = o(DP (α, p)/n), then

|E| = OP
( n

DP (α, p) ·
(
g(n, T )

)2) with DP (α, p) = min
a6=b

K∑
k=1

1
αk

(
pa,k − pb,k)2.

Similarly if ‖N̂ −N‖ = oP(f(n, T )) for some f(n, T ) = o(T/n) and h(n, T ) is chosen such
that ω((n/T )2 · (f2/n)) = h2 = o(DP (α, p)/n), then

(40) |E| = OP
( n

DN (α, p) ·
(n
T
f(n, T )

)2)
with DN (α, p) = min

a6=b

K∑
k=1

1
αk

(πapa,k
αa

− πbpb,k
αb

)2
.

Here, π denotes the solution to πTp = πT.

5.1. Proof of Theorem 2. We will prove Theorem 2 in the case that the Spectral Clustering
Algorithm is applied to P̂ . By repeating the arguments, the analogous result for N̂ can be
established: we only indicate the different separability argument from which (40) follows. The
proof of Theorem 2 consists of four steps.

Step 1. We show that the transition matrix P satisfies a separability property: i.e., if two states
x, y ∈ V do not belong to the same cluster, the l2-distance between their respective rows
Px,·, Py,· is at least Ω(

√
D(α, p)/n).

Step 2. We upper bound the error ‖R̂− P‖F using ‖P̂ − P‖.
Step 3. We prove that R̂ also satisfies the separability property if ‖P̂ − P‖ → 0, as suggested by

Step 1 and Step 2.
Step 4. Because of R̂’s separability property, we must conclude that the number of misclassified

states satisfies Theorem 2. Otherwise the separability property of Step 3 would contradict
with Step 2.

Step 1: P satisfies a separability property.

Lemma 4. For any x, y ∈ V for which σ(x) 6= σ(y),

‖Px,· − Py,·‖2 = Ω
(√DP (α, p)

n

)
.

Proof. By (i) definition of the elements Px,y, see (1),

‖Px,· − Py,·‖22 =
∑
z∈V
|Px,z − Py,z|2

(i)=
K∑
k=1

∑
z∈Vk

∣∣∣ pσ(x),k
|Vk| − 1[σ(x) = k] −

pσ(y),k
|Vk| − 1[σ(y) = k]

∣∣∣2.
We therefore have that

‖Px,· − Py,·‖22 ∼
K∑
k=1

(pσ(x),k − pσ(y),k)2

nαk
≥ 1
n
DP (α, p)

asymptotically. This completes the proof.

Step 2: The error ‖R̂− P‖F is asymptotically bounded by ‖P̂ − P‖.

Lemma 5. ‖R̂− P‖F ≤
√
K(1 +

√
2)‖P̂ − P‖.
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Proof. Recall that for the Frobenius norm it holds for any matrix A ∈ Rn×n that ‖A‖2F =∑n
i=1 σ

2
i (A), and that for the spectral norm ‖A‖ = maxi=1,...,n{σi(A)}. Because both R̂ and P

are of rank K, the matrix R̂− P is also of rank K, and therefore

‖R̂− P‖2F ≤ K‖R̂− P‖2.

By the triangle inequality it then follows that

(41) ‖R̂− P‖F ≤
√
K
(
‖R̂− P̂‖ + ‖P̂ − P‖

)
.

Since K is independent of n, all that remains is to bound ‖R̂− P̂‖ using ‖P̂ − P‖.
We (i) use [21, Thm. 9.1] to bound ‖R̂− P̂‖. When choosing Ω = I and Q = U(:,[1,...,K]), this

theorem gives the upper bound

(42) ‖P̂ − R̂‖ = ‖P̂ − U(:,[1,...,K])U(:,[1,...,K])
TP̂‖ = ‖(I −QQT)P̂‖

(i)
≤
√

2σK+1(P̂ ).

By (ii) applying the triangle inequality and (iii) since P is of rank K, it then follows that

σK+1(P̂ ) = ‖U(:,[K+1,...,n])U(:,[K+1,...,n])
TP̂‖ = ‖U(:,[K+1,...,n])U(:,[K+1,...,n])

T(P̂ − P + P )‖(43)
(ii)
≤ ‖U(:,[K+1,...,n])U(:,[K+1,...,n])

T(P̂ − P )‖ + ‖U(:,[K+1,...,n])U(:,[K+1,...,n])
TP‖

(iii)
≤ ‖P̂ − P‖.

The proof is completed after bounding (41) by (42) and (43).

Step 3: R̂ also satisfies a separability property.

Lemma 6. If ‖P̂ − P‖ = oP(g(n, T )) for some g(n, T ) = o(1) and h(n, T ) is such that
ω
(
(g(n, T ))2/n

)
=
(
h(n, T )

)2 = o(DP (α, p)/n), then

‖R̂x,· − Px,·‖2 = ΩP
(√DP (α, p)

n

)
for any misclassified vertex x ∈ E .

Proof. Define P̄k , 〈Pz,·〉z∈Vk for k = 1, . . . ,K. Let 0 < a < 1/2, 1 + a < b < ∞ be two
constants. Define the set of cores:

Ck ,
{
x ∈ Vk

∣∣‖R̂x,· − P̄k‖2 ≤ ah(n, T )
}

for k = 1, . . . ,K,

i.e., states from cluster k for which R̂x,· is correctly close to cluster k’s center. Define also the set
of outliers:

O ,
{
x ∈ V

∣∣‖R̂x,· − P̄k‖2 ≥ bh(n, T ) for all k = 1, . . . ,K
}
,

so states for which R̂x,· is far from any cluster’s center.
Let x ∈ O, and then choose any cluster k ∈ {1, . . . ,K} and any of its core states y ∈ Ck. By

(i) first centering and then applying the reverse triangle inequality, we find

‖R̂x,· − R̂y,·‖2
(i)
≥
∣∣‖R̂x,· − P̄k‖2 − ‖R̂y,· − P̄k‖2∣∣

Since x ∈ O and y ∈ Ck, it follows that ‖R̂x,· − R̂y,·‖2 ≥ (b− a)h(n, T ). Furthermore b− a > 1,
implying that y 6∈ Nx. We have shown that Nx ∩

(
∪Kk=1Ck

)
= ∅ for all x ∈ O.

By (ii) Lemma 5

K(1 +
√

2)2‖P̂ − P‖2
(ii)
≥ ‖R̂− P‖2F =

∑
x∈V
‖R̂x,· − P̄σ(x)‖22

≥ |
(
∪Kk=1Ck

)c| min
x∈
(
∪K
k=1Ck

)c{‖R̂x,· − P̄σ(x)‖22
}
≥ |
(
∪Kk=1Ck

)c|(ah(n, T ))2.

imsart-aap ver. 2014/10/16 file: J_Sanders__A_Proutiere__OCABMC__arXiv_version.tex date: December 27, 2017



20 J. SANDERS AND A. PROUTIÈRE

Rearrange to conclude that |
(
∪Kk=1Ck

)c| = OP((g(n, T )/h(n, T ))2) = oP(n) by our assumptions
on h(n, T ). Similarly for any k ∈ {1, . . . ,K}, K(1 +

√
2)2‖P̂ − P‖2 ≥ |Cc

k ∩ Vk|(ah(n, T ))2 such
that |Ck| = |Vk| − |Cc

k ∩Vk| ≥ nαk −OP((g(n, T )/h(n, T ))2) = nαk(1− oP(1)) by the assumptions
on h(n, T ).

For any x ∈ O, |Nx| ≤ |
(
∪Kk=1Ck

)c| = OP((g(n, T )/h(n, T ))2), since Nx ∩
(
∪Kk=1Ck

)
= ∅

and therefore Nx ⊆
(
∪Kk=1Ck

)c. For any y ∈ ∪Kk=1Ck, Cσ(y) ⊆ Ny since a < 1/2 and therefore
|Ny| ≥ |Cσ(y)| = nασ(y) − OP((g(n, T )/h(n, T ))2). Note furthermore that because h(n, T ) =
o(
√
DP (α, p)/n), Ck ∩ Cl = ∅ for k 6= l and sufficiently large n, T . By (38), it is then impossible

that the centers z∗1 , . . . , z∗K are outliers if n, T are sufficiently large (we have shown the existence
of at least K disjoint sets that would be selected through maximization before any outlier would
be considered for promotion to center). Specifically we have that for k = 1, . . . ,K

∃z ∈
(
∪Kl=1Cl

)
\ ∪k−1

l=0 Sl : |Nz| ≥ |C(k)| ≥ nαk(1− oP(1)),

where the |C(1)| ≥ . . . ≥ |C(K)| denote the order statistic for the core cardinalities and α(1) ≥
. . . ≥ α(K) denote the order statistic for the cluster concentrations. Thus for sufficiently large
n, T there exists a permutation γ such that

(44) ‖R̂z∗
k
,· − P̄γ(k)‖2 < ah(n, T ) for k = 1, . . . ,K.

Finally, let x ∈ E be any misclassified state. Necessarily x 6∈ Nz∗
σ(x)

, for otherwise x would not
be misclassified. If x ∈ Nz∗c for some c 6= σ(x), we have ‖R̂x,·− P̄c‖2 ≤ (1 + a)h(n, T ) by (44) and
thus

‖R̂x,· − P̄σ(x)‖2
(i)
≥
∣∣‖R̂x,· − P̄c‖2 − ‖P̄c − P̄σ(x)‖2

∣∣ ≥
√
DP (α, p)

n
− (1 + a)h(n, T ).

Since h(n, T ) = o(
√
DP (α, p)/n), the result in Lemma 6 follows. If x ∈ (∪Kk=1Nz∗k)c, the algorithm

has associated x to the closest (but incorrect) center via (39), i.e., to some cluster c 6= σ(x)
satisfying ‖R̂z∗c ,· − R̂x,·‖2 ≤ ‖R̂z∗σ(x),· − R̂x,·‖2. Since each center z∗k is ah(n, T ) close to its truth
P̄k, which themselves are at least Ω(

√
DP (α, p)/n) apart, it must be that ‖R̂x,· − P̄σ(x)‖2 =

Ω(
√
DP (α, p)/n). This completes the proof.

Step 4: Separability in R̂ implies an upper bound on |E|.

Proof. The final step to prove Theorem 2 is almost immediate. Since (i) by Lemma 5 and
(ii) strict positivity of the summands and Lemma 6, if ‖P̂ − P‖ = oP(g) for some g = o(1) and
ω(g2/n) = h = o(1/n), then

K(1 +
√

2)2‖P̂ − P‖2
(i)
≥ ‖R̂− P‖2F =

∑
x∈V
‖R̂x,· − Px,·‖22

=
∑
x∈E
‖R̂x,· − Px,·‖22 +

∑
x∈V\E

‖Rx,· − Px,·‖22
(ii)= ΩP

(
|E|DP (α, p)

n

)
.(45)

It must therefore be that Theorem 2 holds for otherwise (45) would be contradictory.

When N̂ is used instead of P̂ . To establish the analogous result for when N̂ is used instead
of P̂ , we first establish that N also satisfies a separability result. All remaining arguments then
follow analogously.

Lemma 7. For any x, y ∈ V for which σ(x) 6= σ(y),

‖Nx,· −Ny,·‖2 = Ω
(√T 2DN (α, p)

n3

)
.
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Proof. By (i) definition Nx,y = TΠxPx,y, and (ii) by the definition of Px,y, recall (1),

‖Nx,· −Ny,·‖22 =
∑
z∈V
|Nx,z −Ny,z|2

(i)=
∑
z∈V
|TΠxPx,z − TΠyPy,z|2

(ii)= T 2
K∑
k=1

∑
z∈Vk

∣∣∣Π̄σ(x)
pσ(x),k

|Vk| − 1[σ(x) = k] − Π̄σ(y)
pσ(y),k

|Vk| − 1[σ(y) = k]

∣∣∣2
we have that

‖Nx,· −Ny,·‖22 ∼
T 2

n3

K∑
k=1

1
αk

(πσ(x)pσ(x),k
ασ(x)

−
πσ(y)pσ(y),k
ασ(y)

)2
≥ T 2

n3DN (α, p)

asymptotically. This completes the proof.

6. The Cluster Improvement Algorithm. The Cluster Improvement Algorithm, whose
pseudo-code is presented in Algorithm 2, aims at sequentially improving the cluster assignment
identified by the Spectral Clustering Algorithm. In each iteration, it works as follows. Given a
cluster assignment {V̂ [t]

k }k=1,...,K obtained after the t-th iteration, it first calculates the estimates

p̂a,b = |V̂
[t]
b | − 1[a = b]
|V̂ [t]
a ||V̂ [t]

b |

∑
x∈V̂ [t]

a

∑
y∈V̂ [t]

b

P̂x,y = |V̂
[t]
b | − 1[a = b]
|V̂ [t]
a ||V̂ [t]

b |
P̂V̂ [t]

a ,V̂ [t]
b

for a, b = 1, . . . ,K,

π̂k = 1
T

∑
x∈V̂ [t]

k

∑
y∈V

N̂x,y = 1
T
N̂V̂ [t]

k
,V and α̂k = |V̂

[t]
k |
n

for k = 1, . . . ,K.(46)

It then initializes V̂ [t+1]
k = ∅ for k = 1, . . . ,K, and assigns each vertex x = 1, . . . , n to V [t+1]

copt
x
←

V [t+1]
copt
x
∪ {x}, where

(47) copt
x , arg max

c=1,...,K
u[t]
x (c), and u[t]

x (c) ,
{ K∑
k=1

(
N̂
x,V̂ [t]

k

ln p̂c,k + N̂V̂ [t]
k
,x

ln p̂k,c
α̂c

)
− T

n
· π̂c
α̂c

}
.

This results in a new cluster assignment {V̂ [t+1]
k }k=1,...,K .

The algorithm works by placing each state in the cluster it most likely belongs to, based on
the known structure and the sample path. This can be seen by noting that the objective function
in (47) is the difference between two log-likelihood functions, as we discuss in Appendix G. If the
initial cluster assignment {V̂ [0]

k }k=1,...,K is sufficiently close to the ground truth we can expect
that |E [t]| → 0 as t → ∞. It turns out that the Spectral Clustering Algorithm provides such
sufficiently close initial cluster assignment. Theorem 3 formally states our result, and provides
sufficient conditions under which the number of misclassifications decreases with each iteration.

Theorem 3. If I(α, p) > 0, ∃0<η 6=1 : maxa,b,c=1,...,K{pb,a/pc,a, pa,b/pa,c} ≤ η, T = ω(n),
|E [t]| = OP(e[t]

n ) for some 0 < e
[t]
n = o(n), ‖N̂ −N‖ = OP(f(n, T )) for some f(n, T ) = o(T/n),

‖P̂ − P‖ = OP(g(n, T )) for some g(n, T ) = o(1), and |E [t+1]| �P e
[t+1]
n , then

(48) e[t+1]
n = O

(
e[t]
n

(n
T
f(n, T )

)2)
= o(e[t]

n ).

As a consequence of the above theorem, if we initialize the Cluster Improvement Algorithm
with a cluster assignment for which |E [0]| = oP(n), we find by iterating (48) that after τ ∈ N+
steps

|E [τ ]| = OP
(
n
(n
T
f(n, T )

)2τ)
.
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In Section 8, we conjecture that a f(n, T ) = o(T/n) exists such that ‖N̂ −N‖ = OP(f(n, T ))
whenever T = ω(n). The improvement step then improves the cluster assignment after each
iteration when n, T are sufficiently large. Furthermore, Section 8 contains numerical results that
suggest that ‖N̂ −N‖ ≈ OP(

√
T/n), i.e., that a function f(n, T ) ≈

√
T/n would suffice. If this

is indeed the correct asymptotic scaling, it would for example follow for the case T = n ln (n/s)
that |E [τ ]| ≈ OP(n(1/ ln (n/s))τ ). That would imply that |E [τ∗]| ≈ oP(s) after as few as τ∗ ≈
ln (n/s)/(ln ln (n/s)) = O(lnn/s) iterations.

6.1. Proof of Theorem 3. The proof of Theorem 3 consists in first observing that after the
(t + 1)-st iteration, for any misclassified state x, its true cluster σ(x) does not maximize the
objective function u[t]

x (c). Hence summing over all misclassified states, we get

E ,
∑

x∈E [t+1]

(
u[t]
x (σ[t+1](x))− u[t]

x (σ(x))
)
≥ 0.

Next the proof proceed in two steps.

Step 1. We show through concentration arguments that asymptotically E ≈ −(T/n)I(α, p)|E [t+1]|+
‖N̂ −N‖

√
|E [t+1]||E [t]|.

Step 2. For sufficiently large n, T , putting the result of Step 1 together with the aforementioned
suboptimality E ≥ 0 yields Theorem 3.

Step 1. Substituting u[t]
x ’s definition from (47), we obtain after simplifying

E =
∑

x∈E [t+1]

[ K∑
k=1

(
N̂
x,V̂ [t]

k

ln
p̂σ[t+1](x),k
p̂σ(x),k

+ N̂V̂ [t]
k
,x

ln
p̂k,σ[t+1](x)
p̂k,σ(x)

)
+
(N̂V̂ [t]

σ(x),V

|V̂ [t]
σ(x)|

−
N̂V̂ [t]

σ[t+1](x)
,V

|V̂ [t]
σ[t+1](x)|

)]
.

Next, we split E = E1 + E2 + E3 + E4 into different terms, each centered around a different
object that is expected to concentrate. Specifically, we define E1 = Eout

1 + Ein
1 + Ecross

1 with

Eout
1 =

∑
x∈E [t+1]

K∑
k=1

N̂x,Vk ln
pσ[t+1](x),k
pσ(x),k

, Ein
1 =

∑
x∈E [t+1]

K∑
k=1

N̂Vk,x ln
pk,σ[t+1](x)
pk,σ(x)

,

Ecross
1 =

∑
x∈E [t+1]

(N̂Vσ(x),V

|Vσ(x)|
−
N̂V

σ[t+1](x),V

|Vσ[t+1](x)|

)
as well as E2 = Eout

2 + Ein
2 with

Eout
2 =

∑
x∈E [t+1]

K∑
k=1

(
N̂
x,V̂ [t]

k

− N̂x,Vk
)

ln
pσ[t+1](x),k
pσ(x),k

,

Ein
2 =

∑
x∈E [t+1]

K∑
k=1

(
N̂V̂ [t]

k
,x
− N̂Vk,x

)
ln
pk,σ[t+1](x)
pk,σ(x)

,

and E3 = Eout
3 + Ein

3 with

Eout
3 =

∑
x∈E [t+1]

K∑
k=1

N̂
x,V̂ [t]

k

(
ln
p̂σ[t+1](x),k
p̂σ(x),k

− ln
pσ[t+1](x),k
pσ(x),k

)
,

Ein
3 =

∑
x∈E [t+1]

K∑
k=1

N̂V̂ [t]
k
,x

(
ln
p̂k,σ[t+1](x)
p̂k,σ(x)

− ln
pk,σ[t+1](x)
pk,σ(x)

)
,
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and finally

(49) E4 =
∑

x∈E [t+1]

(N̂V̂ [t]
σ(x),V

|V̂ [t]
σ(x)|

−
N̂Vσ(x),V

|Vσ(x)|

)
−

∑
x∈E [t+1]

(N̂V̂ [t]
σ[t+1](x)

,V

|V̂ [t]
σ[t+1](x)|

−
N̂V

σ[t+1](x),V

|Vσ[t+1](x)|

)
.

We proceed by bounding the terms E1, E2, E3 and E4.

Lemma 8. If |E [t]| = OP(e[t]
n ), ‖N̂ − N‖ = OP(f(n, T )) for some f(n, T ) = o(T/n), and

|E [t+1]| �P e
[t+1]
n , then

|E2| = OP
(T
n

e
[t]
n

n
e[t+1]
n + f(n, T )

√
e

[t]
n e

[t+1]
n

)
.

Proof. By assumption there exists a constant η > 0 so that pb,a/pc,a ≤ η for all a, b, c =
1, . . . ,K. With this constant it holds moreover that for all a, b, c = 1, . . . ,K, pc,a/pb,a ≥ 1/η. By
the triangle inequality |E2| ≤ |Eout

2 |+ |Ein
2 |, and

|Eout
2 | ≤

∑
x∈E [t+1]

K∑
k=1

∣∣N̂
x,V̂ [t]

k

− N̂x,Vk
∣∣∣∣∣ln pσ[t+1](x),k

pσ(x),k

∣∣∣ ≤ | ln η| ∑
x∈E [t+1]

K∑
k=1

∣∣N̂
x,V̂ [t]

k

− N̂x,Vk
∣∣.

Similarly

|Ein
2 | ≤

∣∣∣ln 1
η

∣∣∣ ∑
x∈E [t+1]

K∑
k=1

∣∣N̂V̂ [t]
k
,x
− N̂Vk,x

∣∣.
Recall that | ln η| = | ln (1/η)|. Thus

(50) |E2| ≤ | ln η|
( ∑
x∈E [t+1]

K∑
k=1

∣∣N̂
x,V̂ [t]

k

− N̂x,Vk
∣∣+ ∑

x∈E [t+1]

K∑
k=1

∣∣N̂V̂ [t]
k
,x
− N̂Vk,x

∣∣).
Next we deal with the summations within the brackets. By (i) the definition of N̂A,B, and (ii)

the triangle inequality and strict positivity of the entries N̂x,y

∑
x∈E [t+1]

K∑
k=1

∣∣N̂
x,V̂ [t]

k

− N̂x,Vk
∣∣ (i)=

∑
x∈E [t+1]

K∑
k=1

∣∣∣ ∑
y∈V̂ [t]

k

N̂x,y −
∑
y∈Vk

N̂x,y

∣∣∣
=

∑
x∈E [t+1]

K∑
k=1

∣∣∣ ∑
y∈V̂ [t]

k
\Vk

N̂x,y −
∑

y∈Vk\V̂
[t]
k

N̂x,y

∣∣∣ (ii)
≤

∑
x∈E [t+1]

K∑
k=1

∑
y∈V̂ [t]

k
∆Vk

N̂x,y = 2
∑

x∈E [t+1]

∑
y∈E [t]

N̂x,y.

Aside from swapping the indices, the conclusion holds similarly for the second summation in
(50). We thus conclude that

|E2| ≤ 2| ln η|
( ∑
x∈E [t+1]

∑
y∈E [t]

N̂x,y +
∑

x∈E [t+1]

∑
y∈E [t]

N̂y,x

)
= 2| ln η|

(
N̂E [t+1],E [t] + N̂E [t],E [t+1]

)
.

We next center both terms around their means. Since the Markov chain is in equilibrium by
assumption, it holds for the first term that

N̂E [t+1],E [t] = NE [t+1],E [t] + N̂E [t+1],E [t] −NE [t+1],E [t]

≤ max
x,y
{TΠxPx,y}|E [t]||E [t+1]|+ N̂E [t+1],E [t] −NE [t+1],E [t] .
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Then after applying Lemma 17 (iii), see Appendix H, we find that

(51) N̂E [t+1],E [t] −NE [t+1],E [t] = 1E [t+1]
T(N̂ −N)1E [t]

(iii)
≤ ‖N̂ −N‖

√
|E [t]||E [t+1]|.

The same conclusion holds for N̂E [t],E [t+1] −NE [t],E [t+1] .
Summarizing, we have so far shown that

|E2| ≤ 4| ln η|
(
max
x,y
{TΠxPx,y}|E [t]||E [t+1]|+ ‖N̂ −N‖

√
|E [t]||E [t+1]|

)
.

By recalling that ΠxPx,y = O(1/n2) and applying Lemma 18, see Appendix I, the result is finally
proven.

Lemma 9. There exists an absolute constant c (independent of n) such that VarΦ[N̂x,Vk ] ≤
c(T lnT )/n for every k = 1, . . . ,K and all x ∈ Vk.

Proof. Proving the statement uses the same techniques as those applied in Proposition 6.
To see this, let z ∈ V and write

N̂z,Vk =
∑
y∈Vk

N̂x,y =
T∑
s=1

∑
y∈Vk

1[Xs−1 = x,Xs = y] =
T∑
s=1

1[Xs−1 = x,Xs ∈ Vk].

Then note that

VarΦ[N̂z,Vk ] =
T∑
t=1

T∑
s=1

CovΦ[1[Xt−1 = z,Xt ∈ Vk],1[Xs−1 = z,Xs ∈ Vk]]

has the same form as (25). The result now follows after applying the exact same steps. In
particular, one concludes that when |t− s| ≥ 2,

CovΦ[1[Xt−1 = x,Xt ∈ Vk],1[Xs−1 = x,Xs ∈ Vk]]
=

∑
x,y,u,v

ΠxPx,y(P |t−s|−1
y,u −Πu)Pu,v1[x = z, y ∈ Vk, u = z, v ∈ Vk]

and subsequently

∣∣∣ T∑
t=1

T∑
s=1

1[|t− s| ≥ 2]CovΦ[1[Xt−1 = x,Xt ∈ Vk],1[Xs−1 = x,Xs ∈ Vk]]
∣∣∣

≤ c

n3

T∑
t=1

T∑
s=t+2

d(|t− s| − 1)
∑

x,y,u,v

1[x = z, y ∈ Vk, u = z, v ∈ Vk]

for some absolute constant c. Then using the filter effect
∑
x,y,u,v 1[x = z, y ∈ Vk, u = z, v ∈

Vk] = O(n2) and continuing the same arguments proves the statement.

Lemma 10. If T = ω(n), ‖N̂−N‖ = OP(f(n, T )) for some f(n, T ) = o(T/n), and |E [t+1]| �P

e
[t+1]
n , then

−E1 = ΩP
(
I(α, p)T

n
e[t+1]
n

)
.
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Proof. We (i) center and use the facts that Nx,Vk = (T/n)((πσ(x)pσ(x),k)/ασ(x)), NVk,x =
(T/n)((πkpk,σ(x))/ασ(x)) to write

− E1

(i)= T

n

∑
x∈E [t+1]

[ K∑
k=1

(πσ(x)pσ(x),k
ασ(x)

ln
pσ(x),k

pσ[t+1](x),k
+
πkpk,σ(x)
ασ(x)

ln
pk,σ(x)

pk,σ[t+1](x)

)
+
(πσ(x)
ασ(x)

−
πσ[t+1](x)
ασ[t+1](x)

)]

+
∑

x∈E [t+1]

{ K∑
k=1

(
(N̂x,Vk −Nx,Vk) ln

pσ(x),k
pσ[t+1](x),k

+ (N̂Vk,x −NVk,x) ln
pk,σ(x)

pk,σ[t+1](x)

)}

−
∑

x∈E [t+1]

(N̂Vσ(x),V −NVσ(x),V

|Vσ(x)|
+
NV

σ[t+1](x),V
− N̂V

σ[t+1](x),V

|Vσ[t+1](x)|

)
.

We first deal with the sum with square brackets. Note that for each x ∈ E [t+1], the summand
is lower bounded by I(α, p), recall definition (5). Furthermore I(α, p) > 0 by assumption. This
implies that

(52) T

n

∑
x∈E [t+1]

[
· · ·
]
≥ T

n
|E [t+1]|I(α, p).

Together with |E [t+1]| �P e
[t+1]
n conclude that (T/n)

∑
x∈E [t+1]

[
· · ·
]

= ΩP(I(α, p)(T/n)e[t+1]
n ).

We proceed by bounding the sum involving the curly brackets. By (ii) using the same steps
that proved (50), conclude that∣∣∣ ∑

x∈E [t+1]

K∑
k=1

(N̂x,Vk −Nx,Vk) ln
pσ(x),k

pσ[t+1](x),k

∣∣∣ (ii)
≤ | ln η|

K∑
k=1

∑
x∈E [t+1]

∣∣N̂x,Vk −Nx,Vk
∣∣.

Now we prepare to apply Lemma 20, see Appendix I. Let k ∈ {1, . . . ,K} and identify Xm,n ≡
|N̂x,Vk −Nx,Vk | and Ym,n ≡ |E [t+1]|. We have by (iv) strict positivity and (v) Jensen’s inequality
that

E[|N̂x,Vk −Nx,Vk |]
(iv)=

√
E[|N̂x,Vk −Nx,Vk |]2

(v)
≤
√
E[|N̂x,Vk −Nx,Vk |2] =

√
Var[N̂x,Vk ]

for all k = 1, . . . ,K and x ∈ Vk. Therefore by Lemma 9 there exists an absolute constant c
(independent of n) such that E[|N̂x,Vk −Nx,Vk |] ≤ c

√
(T lnT )/n for all k = 1, . . . ,K and x ∈ Vk.

By assumption |E [t+1]| �P e
[t+1]
n , so |E [t+1]| = OP(e[t+1]

n ). The prerequisites of Lemma 20 are thus
met, and hence

K∑
k=1

∑
x∈E [t+1]

|N̂x,Vk −Nx,Vk | = OP
(
e[t+1]
n

√
T lnT
n

)
.

The terms involving N̂Vk,x−NVk,x are dealt with similarly, and we conclude that
∣∣∑

x∈E [t+1]
{
· · ·
}∣∣ =

OP(e[t+1]
n

√
(T lnT )/n). By assumption T = ω(n), implying in particular that

√
T lnT/n =

o(T/n). Hence this sum is asymptotically negligible compared to (52).
What remains is to deal with the sum with round brackets. Similar to the derivation of

(51), we have that |N̂Vσ(x),V −NVσ(x),V |/|Vσ(x)| ≤ (n/|Vσ(x)|)1/2‖N̂ −N‖ for each x ∈ E [t+1] and
|NV

σ[t+1](x),V
− N̂V

σ[t+1](x),V
|/|Vσ[t+1](x)| ≤ (n/|Vσ[t+1](x)|)1/2‖N̂ − N‖ for each x ∈ E [t+1]. Since

|Vk| ∼ nαk, we conclude that∣∣∣ ∑
x∈E [t+1]

(
· · ·
)∣∣∣ ≤ 2

mink=1,...,K
√
αk
|E [t+1]|‖N̂ −N‖.

Applying Lemma 18 gives
∣∣∑

x∈E [t+1]
(
· · ·
)∣∣ = OP(e[t+1]

n f(n, T )). By assumption f(n, T ) = o(T/n),
so this sum is asymptotically negligible compared to (52). This completes the proof.
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Lemma 11. If |E [t]| = OP(e[t]
n ), ‖P̂ − P‖ = OP(g(n, T )) for some g(n, T ) = o(1), and

|E [t+1]| �P e
[t+1]
n , then

|E3| = OP
(T
n
g(n, T )e[t+1]

n + T

n

e
[t]
n

n
e[t+1]
n

)
.

Proof. By the triangle inequality, we have E3 ≤ |E3| ≤ |Ein
3 |+ |Eout

3 | with

|Ein
3 | ≤

∑
x∈E [t+1]

K∑
k=1

N̂
x,V̂ [t]

k

(∣∣∣ln p̂σ[t+1](x),k
pσ[t+1](x),k

∣∣∣+ ∣∣∣ln p̂σ(x),k
pσ(x),k

∣∣∣),
|Eout

3 | ≤
∑

x∈E [t+1]

K∑
k=1

N̂V̂ [t]
k
,x

(∣∣∣ln p̂k,σ[t+1](x)
pk,σ[t+1](x)

∣∣∣+ ∣∣∣ln p̂k,σ(x)
pk,σ(x)

∣∣∣).(53)

We now bound the summands. From the inequalities x/(1 + x) ≤ ln (1 + x) ≤ x for x > −1, it
follows that for a, b = 1, . . . ,K,

(54)
∣∣∣ln p̂a,b

pa,b

∣∣∣ =
∣∣∣ln (1 + p̂a,b − pa,b

pa,b

)∣∣∣ ≤ max
{∣∣∣ p̂a,b − pa,b

p̂a,b

∣∣∣, ∣∣∣ p̂a,b − pa,b
pa,b

∣∣∣}.
We proceed by bounding the numerator |p̂a,b − pa,b|. By (i) definition of p̂a,b and the block
structure of Px,y, recall (46) and (1), respectively, and (ii) |Vb| − 1[b = a] ≤ |Vb| and centering,

|p̂a,b − pa,b|
(i)=
∣∣∣ |V̂ [t]

b | − 1[b = a]
|V̂ [t]
a ||V̂ [t]

b |

∑
x∈V̂ [t]

a

∑
y∈V̂ [t]

b

P̂x,y −
|Vb| − 1[b = a]
|Va||Vb|

∑
x∈Va

∑
y∈Vb

Px,y
∣∣∣

= |Vb| − 1[b = a]
|Va||Vb|

∣∣∣ |Va||Vb|
|V̂ [t]
a ||V̂ [t]

b |
|V̂ [t]
b | − 1[b = a]
|Vb| − 1[b = a]

∑
x∈V̂ [t]

a

∑
y∈V̂ [t]

b

P̂x,y −
∑
x∈Va

∑
y∈Vb

Px,y
∣∣∣

(ii)
≤ 1
|Va|

∣∣∣ ∑
x∈V̂ [t]

a

∑
y∈V̂ [t]

b

P̂x,y −
∑
x∈Va

∑
y∈Vb

Px,y
∣∣∣+ P̂V̂ [t]

a ,V̂ [t]
b

|Va|

∣∣∣ |Va||Vb|
|V̂ [t]
a ||V̂ [t]

b |
|V̂ [t]
b | − 1[b = a]
|Vb| − 1[b = a] − 1

∣∣∣.(55)

Note that

∣∣∣ |Va||Vb|
|V̂ [t]
a ||V̂ [t]

b |
·
|V̂ [t]
b | − 1[b = a]
|Vb| − 1[b = a] − 1

∣∣∣ =


∣∣∣ |Va|
|V̂ [t]
a |
− 1

∣∣∣ if b 6= a,∣∣∣ |Va|−|Va|/|V̂ [t]
a |

|V̂ [t]
a |−|V̂

[t]
a |/|Va|

− 1
∣∣∣ otherwise.

For the case b 6= a,

∣∣∣ |Va|
|V̂ [t]
a |
− 1

∣∣∣ = ||Va| − |V̂
[t]
a ||

|V̂ [t]
a |

≤ |E [t]|.

For the case b = a, temporarily adopt the notation v̂ = |V̂ [t]
a | and v = |Va|, note that there exists

a constant c1 so that∣∣∣v − v/v̂
v̂ − v̂/v

− 1
∣∣∣ =

∣∣∣v − v̂ + v̂/v − v/v̂
v̂ − v̂/v

∣∣∣ ≤ |v − v̂|(∣∣∣ 1
v̂ − v̂/v

∣∣∣+ ∣∣∣ v̂ + v

v̂2v − v̂2

∣∣∣) ≤ c1|E [t]|.

Finally note that |Va| ∼ nαa and P̂V̂ [t]
a ,V̂ [t]

b

≤ 1 for a, b = 1, . . . ,K. Therefore there exists a
constant c2 so that

P̂V̂ [t]
a ,V̂ [t]

b

|Va|

∣∣∣ |Va||Vb|
|V̂ [t]
a ||V̂ [t]

b |
|V̂ [t]
b | − 1[b = a]
|Vb| − 1[b = a] − 1

∣∣∣ ≤ c2
|E [t]|
n

.
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Continuing again from (55), we find using (iii) the triangle inequality and (iv) Lemma 17, see
Appendix H, that

|p̂a,b − pa,b|
(iii)
≤ 1
|Va|

(∣∣∣ ∑
x∈V̂ [t]

a

∑
y∈V̂ [t]

b

(
P̂x,y − Px,y

)∣∣∣+ ∣∣∣ ∑
x∈V̂ [t]

a

∑
y∈V̂ [t]

b

Px,y −
∑
x∈Va

∑
y∈Vb

Px,y
∣∣∣)+ c2

|E [t]|
n

(iv)
≤ 1
|Va|

(
‖P̂ − P‖

√
|V̂ [t]
a ||V̂ [t]

b |+
∑

(x,y)∈(V̂ [t]
a ×V̂

[t]
b

)∆(Va×Vb)

|Px,y|
)

+ c2
|E [t]|
n

≤ 1
αa
‖P̂ − P‖ + 1

nαa

∑
(x,y)∈(V̂ [t]

a ×V̂
[t]
b

)∆(Va×Vb)

|Px,y|+ c2
|E [t]|
n

.

We next bound the cardinality:

|(V̂ [t]
a × V̂

[t]
b )∆(Va × Vb)| = |V̂ [t]

a ∆Va||V̂ [t]
b ∪ Vb|+ |V̂

[t]
a ∩ Va||V̂

[t]
b ∆Vb|

= |V̂ [t]
a ∆Va|

(
|V̂ [t]
b ∆Vb|+ |V̂

[t]
b ∩ Vb|

)
+ |V̂ [t]

a ∩ Va||V̂
[t]
b ∆Vb|

≤ 4|E [t]
a ||E

[t]
b |+ 2|E [t]

a ||Vb|+ 2|Va||E [t]
b | ≤ 8n|E [t]|.(56)

Summarizing, since Px,y = O(1/n) there exists a constant c1 so that

(57) |p̂a,b − pa,b| = c1‖P̂ − P‖ + c2
|E [t]|
n

.

From Lemma 9 it follows that for all k = 1, . . . ,K and x ∈ V, N̂x,Vk = OP(T/n) and
N̂Vk,x = OP(T/n). By using this fact, bounding (53) using (57) via (54), and then applying
Lemma 18, the argument is finished.

Lemma 12. If |E [t]| = OP(e[t]
n ), ‖N̂ − N‖ = OP(f(n, T )) for some f(n, T ) = o(T/n), and

|E [t+1]| �P e
[t+1]
n , then

|E4| = OP
(T
n

e
[t]
n

n
e[t+1]
n + f(n, T )

√
e

[t]
n

n
e[t+1]
n

)
.

Proof. Let k ∈ {1, . . . ,K} to examine any one of the summands in E4. We (i) center and
use the triangle inequality to bound all summands as

(58)
∣∣∣N̂V̂ [t]

k
,V

|V̂ [t]
k |
− N̂Vk,V
|Vk|

∣∣∣ (i)
≤ 1
|Vk|

∣∣N̂V̂ [t]
k
,V − N̂Vk,V

∣∣+ N̂V̂ [t]
k
,V

|Vk|

∣∣∣ |Vk|
|V̂ [t]
k |
− 1

∣∣∣.
The left term in (58) can be bounded (ii) using the arguments of (56) and (iii) Lemma 17∣∣N̂V̂ [t]

k
,V − N̂Vk,V

∣∣ ≤ ∑
(x,y)∈(V̂ [t]

k
×V)∆(Vk×V)

(
Nx,y + N̂x,y −Nx,y

)
(ii,iii)
≤ 2 max

x,y
{TΠxPx,y}n|E [t]|+

∑
x∈V̂ [t]

k
∆Vk

∑
y∈V

(
N̂x,y −Nx,y

)
(iv)
≤ c1

T

n
|E [t]|+ ‖N̂ −N‖

√
2|E [t]|n,

where (iv) we have used that TΠxPx,y = O(T/n2). The right term in (58) can be bounded using
N̂V̂ [t]

k
,V ≤ T , and ||Vk|/|V̂

[t]
k | − 1| ≤ |E [t]|/|V̂ [t]

k | ≤ c2|E [t]|/n for some constant c2. Using these
bounds together with (58), (49), and |Vk| ∼ nαk shows that there exist constants c3, c4 such that

|E4| ≤ c3
T

n

|E [t]|
n
|E [t+1]|+ c4‖N̂ −N‖

√
|E [t]|
n
|E [t+1]|.

Using Lemma 18 then completes the proof.
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Step 2. Under the assumptions of Theorem 3, Lemmas 8–12 imply

−n
T
E1 = ΩP

(
I(α, p)e[t+1]

n

)
and

− n

T

(
|E2|+ |E3|+ |E4|

)
= OP

(e[t]
n

n
e[t+1]
n + n

T
f(n, T )

√
e

[t]
n e

[t+1]
n + g(n, T )e[t+1]

n + n

T
f(n, T )

√
e

[t]
n

n
e[t+1]
n

)
.

Additionally, recall that E = E1 +E2 +E3 +E4 ≥ 0, i.e., −E1 ≤ E2 +E3 +E4 ≤ |E2|+ |E3|+ |E4|
almost surely. The prerequisites of Lemma 21, see Appendix I, are therefore met, so necessarily

I(α, p)e[t+1]
n = O

(e[t]
n

n
e[t+1]
n + n

T
f(n, T )

√
e

[t]
n e

[t+1]
n + g(n, T )e[t+1]

n + n

T
f(n, T )

√
e

[t]
n

n
e[t+1]
n

)
.

Note that equality holds when e[t+1]
n = 0. When e[t+1]

n > 0, and recall that e[t]
n > 0 by assumption,

we can divide by (e[t]
n e

[t+1]
n )1/2 to obtain

I(α, p)

√√√√e
[t+1]
n

e
[t]
n

= O
(n
T
f(n, T ) +

√√√√e
[t+1]
n

e
[t]
n

[e[t]
n

n
+ g(n, T ) + n

T
f(n, T )

√
e

[t]
n

n

])
.

Since e[t]
n = o(n), f(n, T ) = o(T/n), and g(n, T ) = o(1), conclude that√√√√e

[t+1]
n

e
[t]
n

= O
(n
T
f(n, T )

)
.

This completes the proof of Theorem 3.

7. Numerical experiments. In this section, we numerically assess the performance of our
algorithms. We first investigate a simple illustrative example. Then we study the sensitivity of
the error rate of the Spectral Clustering Algorithm w.r.t. the number of states and the length of
the observed trajectory. Finally we show the performance of the Cluster Improvement Algorithm
depending on the number of its iterations.

7.1. An example. Consider n = 300 states grouped into three clusters of respective relative
sizes α = (0.15, 0.35, 0.5), i.e., the cluster sizes are cluster sizes |V1| = 48, |V2| = 93 and |V3| = 159.
The transition rates between these clusters are defined by:

p =

 0.92 0.045 0.035
0.0125 0.8975 0.09
0.0175 0.02 0.9625

 .
We generate a sample path of the Markov chain of length T = n1.025 lnn ≈ 1973 and calculate

N̂ . A density plot of a typical sample of N̂ is shown in Figure 3a. The same density plot is presented
in Figure 3b where the states have been sorted so as states in the same cluster are neighbors.
It is important to note that the algorithms are of course not aware of the structure initially –
sorting states constitutes their objective. Next in Figure 3c, we show a color representation of
the kernel P with sorted rows and columns, in which we can clearly see the groups. Note that
the specific colors have no meaning, except for the fact that within the same image two entries
with the same color have the same numerical value.
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(a) N̂ , unsorted (b) N̂ , sorted (c) P , sorted

Fig 3: A sample path of length T = n1.025 lnn ≈ 1973 was generated, from which N̂ is calculated.
If we sort the vertices according to the clusters they belong to, we can see that vertices within
the same cluster share similar dynamics.

Next we apply the Spectral Clustering Algorithm. This generates an initial approximate
clustering V̂ [0]

1 , V̂ [0]
2 , V̂ [0]

3 of the vertices. We generate a visual representation of this clustering
by constructing a BMC kernel P̂ [0] from the approximate cluster structure and the estimate
p̂[0]. This represents the belief that the algorithm has at this point of the true BMC kernel
P . A color representation of this kernel is shown in Figure 4a. We finally execute the Cluster
Improvement Algorithm. After 3 iterations, it has settled on a final clustering. We generate a
color representation of the clustering similar to before, resulting in Figure 4b. The algorithms
achieved a 99.7% accuracy: all but one state have been accurately clustered.

(a) Initial clustering. (b) Final clustering.

Fig 4: (a) Result after applying the Spectral Clustering Algorithm to the approximation N̂ . (b)
Result after applying 3 iterations of the Cluster Improvement Algorithm. 99.7% of all states were
accurately clustered.

7.2. Performance sensitivity of the Spectral Clustering Algorithm. In this section, we examine
the dependency of the number of misclassified states on the size of the kernel n, when we only
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apply the Spectral Clustering Algorithm. We choose α = (0.15, 0.35, 0.5), and set

p =

 0.5 0.2 0.3
0.1 0.7 0.2
0.35 0.05 0.6

 .
These parameters imply that I(α, p) ≈ 0.88 > 0. This value for I(α, p) is lower than in the
case examined in Section 7.1, so we expect clustering to be more difficult. We have selected a
more challenging model so that the initial number of misclassified states will be large and the
asymptotics clear.

Figure 5 displays the error rate of the Spectral Clustering algorithm as a function of n, for
different trajectory lengths T . As benchmarks, we include a dashed line that indicates the error
rate obtained by assigning states to clusters uniformly at random, i.e., P[v 6∈ Vσ(v)] =

∑K
k=1 P[v 6∈

Vk|σ(v) = k]αk = 1− 1/K, as well as a dotted line that indicates the error rate when assigning
all states to the smallest cluster, i.e., 1−mink{αk}. For the K-means step of the algorithms, we
use Mathematica’s default implementation for convenience. Observe that when T = n lnn, the
fraction of misclassified states hardly decrease as a function of n. This is in line with our lower
bound. When T gets larger, the error converges to zero faster. Note that the Spectral Clustering
Algorithm recovers the clusters exactly when the sample path is sufficiently long.
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Fig 5: The error rate of the Spectral Clustering Algorithm as function of n, for different scalings
of T . Every point is the average result of 40 simulations, and the bars indicate a 95%-confidence
interval.

7.3. Performance sensitivity of the Spectral Clustering Improvement algorithm. We now
examine the number of misclassified states as a function of T , when we apply the Spectral
Clustering Algorithm and a certain number of iterations of the Cluster Improvement Algorithm.
We choose α = (1/3, 1/3, 1/3), and set

p =

0.1 0.4 0.5
0.7 0.1 0.2
0.6 0.3 0.1

 .
Different from the previous experiments, the clusters are now of equal size and the off-diagonal
entries of p are dominant. These parameters imply that I(α, p) ≈ 0.27 > 0, so the cluster
algorithms should work, but the situation is again more challenging than in Section 7.1 and
Section 7.2.

Figure 6 depicts the error after applying the Spectral Clustering Algorithm and subsequently
the Cluster Improvement Algorithm up to two times, as a function of T . We have chosen both
n, T relatively small so that the inputs are significantly noisy. For short sample paths, T . 15000,
the data is so noisy that the Cluster Improvement Algorithm does not provide any improvement
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over the Spectral Clustering Algorithm. For T & 15000, the Spectral Clustering Algorithm
provides a sufficiently accurate initial clustering for the Cluster Improvement Algorithm to work.
Because marks 1 and 2 overlap in almost all cases, we can conclude that there is (on average, and
in the present situation) no benefit in running the Clustering Improvement Algorithm more than
once. There is no mark 2 at T = 30000 in this logarithmic plot, because the Cluster Improvement
Algorithm achieved 100% accurate detection after 2 iterations in all 200 simulations.
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Fig 6: The error after applying the Spectral Clustering Algorithm (mark 0), and subsequently
the Cluster Improvement Algorithm (marks 1, 2) several times, as a function of T . Each number
represents the number of improvement steps. Here, n = 240. Every point is the average result of
200 simulations, and the bars indicate a 95%-confidence interval. We have minorly offset marks
1, 2 to the right and left for readability, respectively. At T = 30000, the Cluster Improvement
Algorithm achieved 100% accurate detection after 2 iterations in all 200 instances.

8. Concentration of the spectral norm of the noise matrix. Recall that the Spectral
Clustering Algorithm and Cluster Improvement Algorithm rely on calculating the matrices
N̂ ∈ Nn×n0 and P̂ ∈ ∆∆(n−1)×n element-wise as

N̂x,y =
T−1∑
t=0

1[Xt = x,Xt+1 = y], and P̂x,y =
∑T−1
t=0 1[Xt = x,Xt+1 = y]∑T−1

t=0 1[Xt = x]
for x, y ∈ V.

In the convergence proofs of the algorithms, we encountered the spectral norms of the noise
matrices N̂−N and P̂ −P . Specifically, we require that ‖N̂−N‖ is atleast oP(T/n) and ‖P̂ −P‖
atleast oP(1). The primary difficulty in proving these statements though is that N̂ constitutes
a random matrix with stochastic dependent entries. While concentration of the eigenvalues of
a random matrix has been actively investigated when the entries are independent or satisfy a
weak condition of dependence [22–27], or when the transition matrix of the Markov chain itself
is random [28, 29], we were unable to find work relating to the case when the entries are dictated
by a Markov chain with a fixed transition matrix with a block structure.

We therefore examined proof strategies to obtain bounds on the concentration of ‖N̂ −N‖
and ‖P̂ − P‖, each with varying degrees of success. These included an attempt to reduce the
problem to a case of independent entries [30], applying an epsilon-net argument [23], Wigner’s
trace method [22, 31], Stein’s method for concentration inequalities [32], generalized Hoeffding
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inequalities for Markov chains [33–35], matrix perturbation techniques [36–39], and a method
of exchangeable pairs [40]. We give this (nonexhaustive) list of approaches to facilitate future
research, because while we have so far been unable to prove the following conjecture, we believe
it holds and warrants further investigation.

Conjecture. If the Markov chain {Xt}t≥0 is a BMC and T = ω(n), then there exist
functions f(n, T ) = o(T/n) and g(n, T ) = o(1) such that ‖N̂−N‖ = OP(f(n, T )) and ‖P̂ −P‖ =
OP(g(n, T )), respectively.

We verified numerically that the above conjecture holds. In Figure 7, we plot ‖N̂ −N‖ as a
function of the number n of states. The results reported there suggest that the conjecture holds
for f(n, T ) ≈

√
T/n.
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Fig 7: Simulations of the asymptotic behavior of ‖N̂ −N‖, together with best fits of the form
c1 + c2

√
T/n for different scalings of T . The simulations suggest that f(n, T ) ≈

√
T/n = o(T/n).
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APPENDIX A: PROPERTIES OF UNIFORM VERTEX SELECTION

Lemma 13. If a state V ∗ is selected uniformly at random from two specific clusters a, b ∈
{1, . . . ,K}, a 6= b, and a state V is selected uniformly at random from all states,

PΦ[V ∗ ∈ E ] = PΦ[V ∈ E|V ∈ Va ∪ Vb].

Proof. We have:

PΦ[V ∗ ∈ E ] =
∑

v∈Va∪Vb

PΦ[V ∗ ∈ E|V ∗ = v]PΦ[V ∗ = v] = 1
|Va|+ |Vb|

∑
v∈Va∪Vb

PΦ[v ∈ E ],

and

PΦ[V ∈ E|V ∈ Va ∪ Vb] =
∑
v∈V PΦ[V ∈ E , V ∈ Va ∪ Vb|V = v]PΦ[V = v]

PΦ[V ∈ Va ∪ Vb]

=
∑
v∈Va∪Vb PΦ[v ∈ E ]/|V|

(|Va|+ |Vb|)/|V|
= 1
|Va|+ |Vb|

∑
v∈Va∪Vb

PΦ[v ∈ E ].

The lemma follows.

Lemma 14. If a state V is selected uniformly at random from all states,

EΦ[|E|] = nPΦ[V ∈ E ].

Proof. We have:

EΦ[|E|] = EΦ[
∑
v∈V

1[v ∈ E ]] =
∑
v∈V

EΦ[1[v ∈ E ]] =
∑
v∈V

PΦ[v ∈ E ],

and

nPΦ[V ∈ E ] = n
∑
v∈V

PΦ[V ∈ E|V = v]PΦ[V = v] = n
∑
v∈V

PΦ[v ∈ E ] 1
|V|

=
∑
v∈V

PΦ[v ∈ E ],

which completes the proof.

APPENDIX B: INEQUALITY FOR DISTRIBUTIONAL LP NORM

Lemma 15. For any p ∈ [1,∞), there exists a constant cp independent of n such that
d1(µ, ν) ≤ cpdp(µ, ν).

Proof. Let 1/q = 1− 1/p. We apply Hölder’s inequality (i), and bound

d1(µ, ν) = ‖µ− ν‖1
(i)
≤ n1/q‖µ− ν‖p = n1/q

(∑
x∈V
|µx − νx|p

)1/p

≤ n1/qΠ
1− 1

p
max

(∑
x∈V

∣∣∣ µxΠx
− νx

Πx

∣∣∣pΠx

)1/p (ii)
≤ cpdp(µ, ν).

Here, we have used (ii), i.e., the fact that the leading order behavior of Πmax is 1/n.
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APPENDIX C: PROOF OF PROPOSITION 2

Proof. Let x ∈ V. We use the Markov chain concentration result in Theorem 3.2 of [18]. It
is shown there that for any transition matrix P (not necessarily reversible) and t ∈ N+

d2(P tx,·,Π) ≤
(
1− 1

2(Φ∗P )2)1
2 td2(P 0

x,·,Π).

Here, Φ∗P denotes the merging conductance of P defined as

Φ∗P , min
{A⊆V|

∑
z∈A Πz≤1

2}

{
Φ∗P (A)

}
, with Φ∗P (A) ,

∑
x∈A

∑
y∈V\A

∑
z∈V

ΠxPx,zΠyPy,z
Πz∑

z∈AΠz
.

The result follows if we prove that there exists a constant α ∈ (0, 1) independent of n such that
Φ∗P (A) ≥ α for each A ⊆ V that satisfies

∑
z∈AΠz ≤ 1

2 . Indeed, this would imply that Φ∗P ≥ α
and therefore (1− 1

2(Φ∗P )2)t/2 ≤ (1− 1
2α

2)t/2, and as a consequence

d2(P tx,·,Π) ≤ ε whenever t ≥ 2 ln ε
ln (1− 1

2α
2)
.

We next prove this assertion.
First, let A ⊆ V be an arbitrary set such that

∑
z∈AΠz ≤ 1

2 . Then

Φ∗P (A) ≥ 1
Πmax|A|

((Πmin)2

Πmax
|A|(n− |A|)nmin

x,y,z

{
Px,zPy,z

})
=
(Πmin

Πmax

)2
(n− |A|)nmin

x,y,z

{
Px,zPy,z

}
.

Since the entries Px,y as well as Πmin, Πmax are of order 1/n, we now need to show that
limn→∞ |A|/n < 1.

We give a proof by contradiction. Recall that there exists a constant cmax ≥ 1 independent of
n such that limn→∞Πmaxn = cmax. In other words,

∀δ>0 ∃N1∈N+ : |Πmaxn− cmax| ≤ δ ∀n>N1 .

Now assume that there exists a way to construct A such that

(59) ∀ε∈(0,1) ∃N2∈N+ :
(∣∣∣ |A|

n
− 1

∣∣∣ ≤ ε, 1
2 ≥

∑
z∈A

Πz

)
∀n>N2 .

Since ∑
z∈A

Πz = 1−
∑
z∈Ac

Πz ≥ 1−Πmaxn
(
1− |A|

n

)
,

the assumption in (59) would imply that

∀δ>0,ε∈(0,1) ∃N3=max{N1,N2}∈N+ :
(∣∣∣ |A|

n
− 1

∣∣∣ ≤ ε, 1
2 ≥

∑
z∈A

Πz ≥ 1− (cmax + δ)ε)
)
∀n>N3 .

Specifying e.g. δ = cmax (this can be chosen arbitrarily) gives

∀ε∈(0,1) ∃N3∈N+ :
(∣∣∣ |A|

n
− 1

∣∣∣ ≤ ε, 1
2 ≥

∑
z∈A

Πz ≥ 1− 2cmaxε)
)
∀n>N3 .

This gives the contradiction as ε ↓ 0 once ε < 1/(4cmax), and completes the proof.
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APPENDIX D: Q IS A STOCHASTIC MATRIX

To see this, observe that for x ∈ V\{V ∗},

∑
y∈V

Qx,y =
qω(x),0
n

+
∑

y∈Wω(x)\{x}

qω(x),ω(x)
|Wω(x)| − 1 +

K∑
k=1

1[k 6= ω(x)]
∑
y∈Wk

qω(x),k
|Wk|

=
qω(x),0
n

+
K∑
k=1

qω(x),k
(17)=

qω(x),0
n

+
K∑
k=1

(
pω(x),k −

qω(x),0
Kn

)
= 1.

Similarly for x = V ∗

∑
y∈V

QV ∗,y =
K∑
k=1

∑
y∈Wk

q0,k
|Wk|

=
K∑
k=1

q0,k
(7)= 1.

APPENDIX E: PROOF OF PROPOSITION 4

Proof. We first show that (γ[0]
1 , . . . , γ

[0]
K , γ

[0]
0 ) is a probability distribution. Since (i) Π(Q) is a

probability distribution

K∑
k=1

γk + γ0 = lim
n→∞

( K∑
k=1
|Wk|Π̄

(Q)
k + Π(Q)

V ∗

)
= lim

n→∞

( K∑
k=1

∑
x∈Wk

Π(Q)
x + Π(Q)

V ∗

)
= lim

n→∞

∑
x∈V

Π(Q)
x

(i)= 1.

Next we show that (ii) by the global balance equations for Π(Q)

(60)

γ
[0]
0 = lim

n→∞
Π(Q)
V ∗

(ii)= lim
n→∞

∑
x∈V

Π(Q)
x Qx,V ∗

(18)= lim
n→∞

K∑
k=1

∑
x∈Wk

Π̄(Q)
k

qk,0
n

= lim
n→∞

K∑
k=1

γ
[0]
k

qk,0
n

= 0.

Now we establish that the vector (γ[0]
1 , . . . , γ

[0]
K )T satisfies the balance equations (γ[0]

1 , . . . , γ
[0]
K )p =

(γ[0]
1 , . . . , γ

[0]
K ). For l = 1, . . . ,K

γ
[0]
l = lim

n→∞
|Wl|Π̄

(Q)
l = lim

n→∞

∑
y∈Wl

Π(Q)
y

(ii)= lim
n→∞

∑
y∈Wl

∑
x∈V

Π(Q)
x Qx,y

(18)= lim
n→∞

∑
y∈Wl

( K∑
k=1

∑
x∈Wk\{y}

Π̄(Q)
k

qk,l
|Wl| − 1[k = l] + Π(Q)

V ∗
q0,l
|Wl|

)

= lim
n→∞

( K∑
k=1

(
|Wk| − 1[k = l]

)
Π̄(Q)
k

|Wl|
|Wl| − 1[k = l]qk,l + Π(Q)

V ∗ q0,l
) (17)=

K∑
k=1

γ
[0]
k pk,l,(61)

where we also recalled (19). This proves the first two assertions.
The third assertion follows from (60) when multiplying the intermediate steps by n, i.e.,

(62) γ
[1]
0

(60)= lim
n→∞

n
K∑
k=1

γ
[0]
k qk,0

1
n

=
K∑
k=1

γ
[0]
k qk,0.

Together with the first assertion, this completes the proof.

APPENDIX F: ASYMPTOTIC COMPARISONS BETWEEN P AND Q’S ENTRIES

Recall that Rx,y = Qx,y/Px,y for x, y ∈ V.

Lemma 16. The following properties hold:

(i) Rx,y = 1 + n−1(1[σ(y) = σ(V ∗)]/ασ(y) − qσ(x),0/(pσ(x),σ(y)K)) +O(n−2) for x, y 6= V ∗,

imsart-aap ver. 2014/10/16 file: J_Sanders__A_Proutiere__OCABMC__arXiv_version.tex date: December 27, 2017



38 J. SANDERS AND A. PROUTIÈRE

(ii) Rx,V ∗ = qω(x),0ασ(V ∗)/pω(x),σ(V ∗) +O(n−1) for x ∈ V\{V ∗},
(iii) RV ∗,y = q0,ω(x)/pσ(V ∗),ω(x) +O(n−1) for y ∈ V\{V ∗}.

Proof. Let x, y ∈ V\{V ∗}. Using a Taylor expansion (i), we find that:

Rx,y
(1,18)=

pσ(x),σ(y) − qσ(x),0/(Kn)
pσ(x),σ(y)

·
|Vσ(y)| − 1[σ(x) = σ(y)]

|Vσ(y)| − 1[σ(y) = σ(V ∗)]− 1[σ(x) = σ(y)]
(i)= 1 + 1

n

(1[σ(y) = σ(V ∗)]
ασ(y)

−
qσ(x),0

pσ(x),σ(y)K

)
+O

( 1
n2

)
.

Similarly for x ∈ V\{V ∗}

Rx,V ∗
(1,18)=

qω(x),0
pσ(x),σ(V ∗)

·
|Vσ(V ∗)| − 1[σ(x) = σ(V ∗)]

n

(i)=
qω(x),0ασ(V ∗)
pσ(x),σ(V ∗)

+O
( 1
n

)
,

and for y ∈ V\{V ∗}

RV ∗,y
(1,18)=

q0,ω(y)
pσ(V ∗),σ(y)

·
|Vσ(y)| − 1[σ(V ∗) = σ(y)]

|Wω(y)|
(i)=

q0,ω(y)
pσ(V ∗),σ(y)

+O
( 1
n

)
.

This completes the proof.

Recall that Sx,y,u,v = lnRx,y · lnRu,v for x, y, u, v ∈ V.

Corollary 1. The following properties hold:

(i) Sx,y,u,v = O(n−2) if all x, y, u, v 6= V ∗,
(ii) Sx,y,u,v = O(n−1) if one of x, y, u, v is V ∗,
(iii) Sx,y,u,v = O(1) if two of x 6= y, u 6= v are V ∗.

Proof. These properties are all direct consequences of Lemma 16, which can be seen by using
the Taylor expansion ln (1 + x) = x+O(x2) for x ≈ 0 and expanding the product. Consider for
example the case x, y, u, v ∈ V\{V ∗}:

Sx,y,u,v = lnRx,y · lnRu,v = ln
(
1 +O

( 1
n

))
· ln

(
1 +O

( 1
n

))
= O

( 1
n2

)
.

The remaining cases follow similarly.

APPENDIX G: THE OBJECTIVE IS A LOG-LIKELIHOOD FUNCTION

In this section, we show that as for the leading terms are concerned, for any vertex x ∈ V and
c ∈ {1, . . . ,K}, maximizing (47) is equivalent to maximizing

ux(c) = ln PM [X0 = x0, . . . , XT = xT ]
PL[X0 = x0, . . . , XT = xT ] =

T∑
s=1

ln
Mxs−1,xs

Lxs−1,xs
.

Here, L denotes the transition matrix of a BMC constructed from the cluster assignment
{V̂ [t]

k }k=1,...,K , and M denotes the transition matrix of a modified BMC. Specifically, it is the
transition matrix of a BMC in which the state x is moved into cluster c. Note that the conclusions
in the paper do not require a formal proof of this statement, which is why we have opted to
include only a rough justification here.

By construction of L and M , we have that Mxs−1,xs 6= Lxs−1,xs only if {xs−1 = x, xs 6= x},
{xs−1 6= x, xs ∈ V̂ [t]

σ[L](x)} or {xs−1 6= x, xs ∈ V̂ [t]
c }. Let σ[L](x) denote the cluster of state x w.r.t.
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the cluster structure used to construct L. Hence only the ratios

Mx,y

Lx,y
=

p̂c,σ[L](y)
p̂σ[L](x),σ[L](y)

·
|V̂ [t]
σ[L](y)| − 1[σ[L](x) = σ[L](y)](

|V̂ [t]
σ[L](y)| − 1[σ[L](y) = σ[L](x)] + 1[σ[L](y) = c]

)
− 1[c = σ[L](y)]

=
p̂c,σ[L](y)

p̂σ[L](x),σ[L](y)
·
|V̂ [t]
σ[L](y)| − 1[σ[L](x) = σ[L](y)]

|V̂ [t]
σ[L](y)| − 1[σ[L](y) = σ[L](x)]

=
p̂c,σ[L](y)

p̂σ[L](x),σ[L](y)
(63)

for y ∈ V\{x},

My,x

Ly,x
=

p̂σ[L](y),c
p̂σ[L](y),σ[L](x)

·
|V̂ [t]
σ[L](x)| − 1[σ[L](y) = σ[L](x)](
|V̂ [t]
c |+ 1

)
− 1[σ[L](y) = σ[L](x)]

=
p̂σ[L](y),c

p̂σ[L](y),σ[L](x)
·
|V̂ [t]
σ[L](x)| − 1[σ[L](y) = σ[L](x)]

|V̂ [t]
c | − 1[σ[L](y) = σ[L](x)]

· 1
1 + 1/(|V̂ [t]

c | − 1[σ[L](y) = σ[L](x)])

∼
p̂σ[L](y),c

p̂σ[L](y),σ[L](x)
·
α̂σ[L](x)
α̂c

+O
( 1
n

)
for y ∈ V\{x},

My,z

Ly,z
=
p̂σ[L](y),σ[L](x)
p̂σ[L](y),σ[L](x)

·
|V̂ [t]
σ[L](x)| − 1[σ[L](y) = σ[L](x)](

|V̂ [t]
σ[L](x)| − 1

)
− 1[σ[L](y) = σ[L](x)]

= 1
1− 1/(|V̂ [t]

σ[L](x)| − 1[σ[L](y) = σ[L](x)])
∼ 1 + 1

nα̂σ[L](x)
+O

( 1
n2

)
.

for y ∈ V\{x}, z ∈ V̂ [t]
σ[L](x)\{x}, and

My,z

Ly,z
=
p̂σ[L](y),c
p̂σ[L](y),c

· |V̂ [t]
c | − 1[σ[L](y) = c](

|V̂ [t]
c |+ 1

)
− 1[σ[L](y) = c]

= 1
1 + 1/(|V̂ [t]

c | − 1[σ[L](y) = c])
∼ 1− 1

nα̂c
+O

( 1
n2

)
.(64)

for y ∈ V\{x}, z ∈ V̂ [t]
c \{x} differ from unity.

We now rewrite ux(c) to identify N̂ . Specifically, we have

ux(c) =
T∑
s=1

(
1[xs−1 = x, xs 6= x] + 1[xs−1 6= x, xs ∈ V̂ [t]

σ[L](x) ∪ V̂
[t]
c ]
)

ln
Mxs−1,xs

Lxs−1,xs

and write

ux(c) =
T∑
s=1

1[xs−1 = x]1[xs 6= x] ln Mx,xs

Lx,xs︸ ︷︷ ︸
f(xs)

+
T∑
s=1

∑
z∈V̂ [t]

σ[L](x)
∪V̂ [t]

c

1[xs = z]1[xs−1 6= x] ln
Mxs−1,z

Lxs−1,z︸ ︷︷ ︸
gz(xs−1)

.

Then, since the summands of both terms above depend on only one variable (xs and xs−1,
respectively),

ux(c) =
T∑
s=1

∑
y∈V\{x}

(
1[xs−1 = x]1[xs = y]f(y) +

∑
z∈V̂ [t]

σ[L](x)
∪V̂ [t]

c

1[xs−1 = y]1[xs = z]gz(y)
)

=
∑

y∈V\{x}
N̂x,yf(y) +

∑
y∈V\{x}

∑
z∈V̂ [t]

σ[L](x)
∪V̂ [t]

c

N̂y,zgz(y).
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Substituting f and gz’s definitions, we obtain

ux(c) =
∑

y∈V\{x}

(
N̂x,y ln Mx,y

Lx,y
+ N̂y,x ln My,x

Ly,x

)
+

∑
y∈V\{x}

∑
z∈(V̂ [t]

σ[L](x)
∪V̂ [t]

c )\{x}

N̂y,z ln My,z

Ly,z
.

By now substituting (63)–(64), we find that by restricting our attention to the leading terms

ux(c) ∼
∑

y∈V\{x}

(
N̂x,y ln

p̂c,σ[L](y)
p̂σ[L](x),σ[L](y)

+ N̂y,x ln
( p̂σ[L](y),c
p̂σ[L](y),σ[L](x)

·
α̂σ[L](x)
α̂c

))

+ T

n
·

(1/T )
∑
y∈V\{x}

∑
z∈V̂ [t]

σ[L](x)
\{x} N̂y,z

α̂σ[L](x)
− T

n
·

(1/T )
∑
y∈V\{x}

∑
z∈V̂ [t]

c \{x}
N̂y,z

α̂c
.

In particular, recognize that for any k = 1, . . . ,K, asymptotically

1
T

∑
y∈V\{x}

∑
z∈V̂ [t]

k
\{x}

N̂y,z ∼
1
T

∑
y∈V

∑
z∈V̂ [t]

k

N̂y,z
(i)∼ π̂k

where for (i) we have used global balance. Finally expand the logarithms and separate out all
terms that do not depend on c. Then conclude that when maximizing over c, this is equivalent
to maximizing the reduced objective function

ured
x (c) =

∑
y∈V\{x}

(
N̂x,y ln p̂c,σ[t](y) + N̂y,x ln p̂σ[t](y),c

)
− T

n
· π̂c
α̂c

=
K∑
k=1

(
N̂
x,V̂ [t]

k

ln p̂c,k + N̂V̂ [t]
k
,x

ln p̂k,c
α̂c

)
− T

n
· π̂c
α̂c

over c. This concludes the proof.

APPENDIX H: SPECTRAL NORM BOUND FOR SUMS OF ELEMENTS OF MATRICES

Lemma 17. For any matrix B ∈ Rn×n and subsets A, C ⊆ {1, . . . , n}, we have∑
r∈A

∑
c∈C

Brc = 1ATB1C .

Furthermore, 1ATB1C ≤ ‖B‖
√
|A||C|.

Proof. We have:

1ATB1C = 1AT
( n∑
r=1

( n∑
c=1

Brc1[c ∈ C]en,r
))

=
n∑

c′=1
1[c′ ∈ A]en,c′T

( n∑
r=1

(∑
c∈C

Brcen,r
))

=
∑
c′∈A

n∑
r=1

∑
c∈C

Brcen,c′
Ten,r =

∑
c′∈A

n∑
r=1

∑
c∈C

Brc1[c′ = r] =
∑
r∈A

∑
c∈C

Brc,

which proves the first statement.
For the second statement, first note that (i) 1ATB1C ∈ R and therefore 1ATB1C ≤ |1ATB1C |.

By (ii) applying the Cauchy–Schwarz inequality twice, and (iii) the consistency of subordinate
norms, we obtain

1ATB1C
(i)
≤ |1ATB1C |

(ii)
≤ ‖1A‖2‖B1C‖2

(iii)
≤ ‖1A‖2‖B‖‖1C‖2.

Lastly for any set A ⊆ {1, . . . , n}, we have that 1A ∈ {0, 1}n, and therefore ‖1A‖2 =
√
‖1A‖1 =√

|A|. Applying this bound for the sets A, C concludes the proof.
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APPENDIX I: STOCHASTIC BOUNDEDNESS PROPERTIES

Recall that when we write Xn = OP(an) for a sequence of random variables {Xn}∞n=1 and
some deterministic sequence {an}∞n=1, this is equivalent to saying

∀ε>0∃δε,Nε : P
[∣∣∣Xn

an

∣∣∣ ≥ δε] ≤ ε∀n>Nε .
Lemma 18. Let ∪∞n=1{Xn}n≥0, ∪∞n=1{Yn} denote two families of random variables with the

properties that Xn, Yn ≥ 0, Xn = OP(xn), and Yn = OP(yn), where {xn}∞n=1, {yn}∞n=1 denote two
deterministic sequences with xn, yn ∈ [0,∞). Then XnYn = OP(xnyn). Similarly if Xn = ΩP(xn),
Yn = ΩP(yn), then XnYn = ΩP(xnyn).

Proof. Let ε > 0. Choose δXε , NX
ε and δYε , NY

ε such that P[Xn ≥ δXε xn] ≤ ε/3 and P[Yn ≥
δYε yn] ≤ ε/3. Pick any δε > δXε δ

Y
ε . With these choices,

P
[∣∣∣XnYn
xnyn

∣∣∣ ≥ δε] = P
[∣∣∣XnYn
xnyn

∣∣∣ ≥ δε, Xn ≥ δXε xn, Yn ≥ δYε yn
]

+ P
[∣∣∣XnYn
xnyn

∣∣∣ ≥ δε, Xn ≥ δXε xn, Yn < δYε yn
]

+ P
[∣∣∣XnYn
xnyn

∣∣∣ ≥ δε, Xn < δXε xn, Yn ≥ δYε yn
]

+ P
[∣∣∣XnYn
xnyn

∣∣∣ ≥ δε, Xn < δXε xn, Yn < δYε yn
]
≤ ε.

We have shown that

∀ε>0∃δε=δXε δYε ,Nε=max{NX
ε ,N

Y
ε } : P

[∣∣∣XnYn
xnyn

∣∣∣ ≥ δε] ≤ ε∀n>Nε .
This completes the proof.

Lemma 19. Let {sn}∞n=1 denote a deterministic sequence with sn ∈ N+. Let ∪∞n=1∪
sn
m=1{Xm,n}

denote a family of random variables with the properties that Xm,n ≥ 0, and ∃δ,N : E[Xm,n] ≤
δxn ∀m=1,...,sn∀n>N . Then Sn =

∑sn
m=1Xm,n = OP(snxn).

Proof. Let ε > 0, δΣ
ε > 0. Since (i) Xm,n > 0 for all m,n, by (ii) Markov’s inequality

(65) P
[∣∣∣ Sn
snxn

∣∣∣ ≥ δΣ
ε

] (i)= P
[ 1
snxn

sn∑
m=1

Xm,n ≥ δΣ
ε

] (ii)
≤
∑sn
m=1 E[Xm,n]
δΣ
ε snxn

.

By assumption ∃δ,N : E[Xm,n] ≤ δxn ∀m=1,...,sn∀n>N . Choose δ,N as such. Specify δΣ
ε = δ/ε. By

(65), we have thus shown that

∀ε>0∃δΣ
ε =δ/ε,Nε=N : P

[∣∣∣ Sn
snxn

∣∣∣ ≥ δΣ
ε

]
≤ ε ∀n>Nε .

Equivalently, Sn = OP(snxn). This completes the proof.

Lemma 20. Let ∪∞n=1 ∪nm=1 {Xm,n} denote a family of random variables with the properties
that Xm,n ≥ 0, and ∃δ,N : E[Xm,n] ≤ δxn ∀m=1,...,n∀n>N . If {Yn}∞n=1 is a sequence of random
variables with the properties that Yn ∈ {1, . . . , n}, and Yn = OP(yn) for some deterministic
sequence {yn}∞n=1 with yn ∈ N+, then Zn =

∑Yn∧n
m=1 Xm,n = OP((yn ∧ n)xn).

Proof. Let ε > 0, δZε > 0. Then

P
[∣∣∣ Zn
ynxn

∣∣∣ ≥ δZε ] = P
[∣∣∣ Zn
ynxn

∣∣∣ ≥ δZε , ∣∣∣Ynyn
∣∣∣ ≥ δYε ]+ P

[∣∣∣ Zn
ynxn

∣∣∣ ≥ δZε , ∣∣∣Ynyn
∣∣∣ < δYε

]

≤ P
[∣∣∣Yn
yn

∣∣∣ ≥ δYε ]+ P
[∣∣∣ 1
ynxn

(δYε yn)∧n∑
m=1

Xm,n

∣∣∣ ≥ δZε ].
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By assumption Yn = OP(yn), so we can choose δYε ∈ N+, N
Y
ε > 0 such that P[|Yn/yn| ≥ δYε ] ≤ ε/2

for all n > NY
ε . Write δZε = δYε δ

Σ
ε , and we will specify δΣ

ε in a moment. Presently, we are at

P
[∣∣∣ Zn
ynxn

∣∣∣ ≥ δZε ] ≤ ε

2 + P
[∣∣∣ 1

(δYε yn)xn

(δYε yn)∧n∑
m=1

Xm,n

∣∣∣ ≥ δΣ
ε

]

≤ ε

2 + P
[∣∣∣ 1

(δYε yn ∧ n)xn

δYε yn∧n∑
m=1

Xm,n

∣∣∣ ≥ δΣ
ε

]
.

The assumptions on the family {Xm,n}∞m,n=1 now allow us to apply Lemma 19: specifically, there
exist δΣ

ε , N
Σ
ε such that the final term is bounded by ε/2 for all n > NΣ

ε . Summarizing, we have
shown that

∀ε>0∃δZε =δYε δΣ
ε ,N

Z
ε =max {NY

ε ,N
Σ
ε ,} : P

[∣∣∣ Zn
ynxn

∣∣∣ ≥ δΣ
ε

]
≤ ε∀n>NZ

ε
.

Equivalently, Zn = OP(ynxn).

Lemma 21. Let ∪∞n=1{Xn}n≥0, ∪∞n=1{Yn} denote two families of random variables with the
properties that P[Xn ≤ Yn] = 1, Xn = ΩP(xn), and Yn = OP(yn), where {xn}∞n=1, {yn}∞n=1 denote
two deterministic sequences with xn, yn ∈ R. Then, xn = O(yn).

Proof. We prove the result by contradiction. Recall first that the assumptions imply that
for every εX , εY > 0, there exist δXε , δYε > 0 such that

lim
n→∞

P[Xn ≤ δXε xn] ≤ εX , lim
n→∞

P[Yn ≥ δYε yn] ≤ εY .

Also note that by (i) definition of conditional probability, (ii) the De Morgan laws, and (iii)
P[{Xn ≤ δXxn} ∩ {Yn ≥ δY yn}] ≥ 0, it follows that

0 = P[Xn > Yn] ≥ P[{Xn > Yn} ∩ {Xn > δXxn} ∩ {Yn < δY yn}]
(i)= P[Xn > Yn|{Xn > δXxn} ∩ {Yn < δY yn}]

(
1− P[({Xn > δXxn} ∩ {Yn < δY yn})c]

)
(ii)= P[Xn > Yn|{Xn > δXxn} ∩ {Yn < δY yn}]

(
1− P[{Xn ≤ δXxn} ∪ {Yn ≥ δY yn}]

)
(iii)
≥ P[Xn > Yn|{Xn > δXxn} ∩ {Yn < δY yn}]

(
1− P[{Xn ≤ δXxn}]− P[{Yn ≥ δY yn}]

)
.

Now suppose that xn = ω(yn). By then taking the limit n→∞ both left and right, we obtain
the inequality 0 ≥ 1− εX − εY , which is a contradiction. Hence it must be that xn = O(yn).
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