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Abstract

We consider an exploration algorithm where at each step, a random number of items become
active while related items get explored. Given an initial number of items N growing to infinity and
building on a strong homogeneity assumption, we study using scaling limits of Markovian processes
statistical properties of the proportion of active nodes in time. This is a companion paper that
rigorously establishes the claims and heuristics presented in [5].

1 Introduction

Assume there exists a binary relation between items V = {1, . . . , N}, to which we associate a
graph where nodes are items such that two items are neighbors if they are related. Let At be the
set of active items at time t (step t) and Bt the set of explored items. We assume that initially,
A0 = B0 = {∅}. Then, we consider the following exploration process: (i) select It ⊂ V \ At ∪Bt
and determine its neighbors in the set of nonexplored items, N It ⊂ V \At ∪Bt, and (ii) actualize
At and Bt by setting

At+1 = At ∪ {It},
Bt+1 = Bt ∪ N It .

These exploration algorithms can be used for instance to approximate the evolution of parking
processes [2] and as we shall show, classes of random sequential adsorption processes. In case
It is a single item at each step, the algorithm discovers in a greedy manner independent sets of
the relation graph. For instance, this type of exploration algorithm is used for defining subsets
of communicating nodes in communication networks with interferences. Otherwise, one can think
of It as a subgraph, and Bt the set of neighbors of this subgraph. Again, it might be linked to
communications procedures where parts of a network might get priority to transmit.

In such problems, the relation graph might be the outcome of spatial effects (nodes interacting
though a geometry which can be itself random) and purely random relations between nodes. This is
definitely the case of wireless networks which have radio conditions defining the level of admissible
interference between two competing nodes. A hardcore interference graph model might hence define
an edge between two nodes if their radio conditions would impede a synchronous communication.

Blockade effects in complex systems of interacting particles can also be described using relation
graphs. Of particular interest to us are specially prepared gases that consist of ultracold atoms
that can reach a “Rydberg state” from a “ground state”. The essential feature of these particles
is that each atom that is in its Rydberg state, prevents neighboring atoms from reaching their
Rydberg state. This is similar in spirit to the interference constraints in wireless networks [6],
and the essential features of the blockade effect can therefore again be described using interference
graphs. This realization also allows us to study statistical properties of the proportion of atoms
ultimately in the Rydberg state through the exploration process defined above [5].
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Note that in general, the dimension needed to represent the exploration algorithm as a Markov
process is n, the size of the graph which impedes simple computations. In this article, we suppose
a strong homogeneity assumption on the relation between items so that the dynamics can be made
Markov in dimension 1 which is a very crude simplification for most problems but which has the
great advantage to lead to simple tractable processes. We here use classical tools (fluid limits
and diffusion approximations) to derive computable characterizations of the performance of such
algorithms under such an assumption. These results allow us to prove functional laws of large
numbers and central limit theorems for the proportion of active items.

This article is structured as follows. In Section 2, we study the case of random sequential
adsorption (RSA) under an homogeneity assumption. We first review usual functional law of large
numbers and central limit theorems for scaled Markov processes aiming at explicit error bounds.
We then use these results to study hitting times that capture statistical properties of the proportion
of active nodes.

2 Random adsorption under an homogeneous relation

Assume from here on that precisely one item is selected in each step. Assume also the following
homogeneity assumption on the graph G induced by the binary relation between items.

Assumption 2.1. If (G1,G2) is a partition of G, ∀ i ∈ G2, the distribution of the number of
neighbors of i in G2 depends only on |G1| and |G2|.
Remark 2.2. Although Assumption (2.1) is not valid in many practical cases such as random
geometric graphs and random graphs with generic degree distribution, Assumption (2.1) is crucial
to get a one-dimensional analysis. It can however be considered a reasonable approximation for
many systems, and it is satisfied for instance by Erdös–Rényi’s random graph. See [2] for a study
of scaling limits in infinite dimension which applies to a much larger class of problems.

Let Zn be the number of explored items at step n, i.e.Zn = ♯{An ∪Bn}. Then,

Zn = Zn−1 + 1 + ξn and Z0 = 0,

where ξn is the distribution of the number of neighbors that an item has at step n in the remaining
non-explored portion of the graph.

Under Assumption (2.1) the distribution of ξn depends only on Zn−1, which with a slight abuse
of notation we denote by ξZn−1

. This also implies that Z = {Zn}n∈N is a discrete Markov process
taking values in {0, . . . , N}, and that Z is an increasing process with in N an absorbing state. The
transition probabilities are given by

pxy(n) = P (Zn = y|Zn−1 = x) = P (ξx = y − x− 1) with y > x.

If we now denote by (pN (·, x)) the distribution of the number of neighbors in G2 of a given vertex
i ∈ G2 given that (G1,G2) is a partition of G with |G1| = x, the transition probabilities can be
written as

px,x+k+1 = P (ξx = k) = pN (k, x) with k ≥ 0.

The transition probabilities in case of the Erdös–Rényi random graph are given by the Binomial
distribution, i.e. pN (k, x) =

(

N−x−1
k

)

pk(1− p)N−x−k−1.
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2.1 Preliminaries

2.1.1 Functional law of large numbers

Given a partition (G1,G2) of G such that |G1| = x, we consider the mean γN (x) and variance ψN (x)
of the number of neighbors in G2 of a given vertex i ∈ G2

γN (x) =

N−1
∑

k=0

kpN (k, x),

ψN (x) =

N−1
∑

k=0

(k − γN (x))2pN (k, x),

and define γ̄N = supx γN (x), ψ̄N = supx ψN (x).
We now consider the scaled process on time and space. Define the scaled process, viewed as a

piece-wise constant trajectory process in continuous time, i.e., for all t > 0

ZNt =
Z[tN ]

N

Here, [x] is the integer part of x, and we suppose that Z0 = 0. We will now derive a law of large
numbers for ZNt using classical tools [3]. The proof of convergence relies on classical techniques,
which we leverage to obtain error bounds along the way.

Proposition 2.3. If there exists a (CL)-Lipschitz function γ on R
+ such that

sup
x

∣

∣

∣
γN (x)− γ

( x

N

)∣

∣

∣
≤ δN , (1)

then for p > 1,
‖ sup
s∈[0,T ]

|ZNs − z(s)| ‖p ≤ exp{CLT }
(

δNT + κp‖MN
T ‖p

)

, (2)

where κp = p/(p− 1). In particular for p = 2,

‖ sup
t∈[0,T ]

|ZN (t)− z(t)| ‖2 ≤ ωN ,

where ωN = (δNT+2
√
2CNT ) exp{CLT }, CN = ψ̄N/N , and z(t) is the solution of the deterministic

differential equation

ż = 1+ γ(z). (3)

Proof. Using the martingale decomposition of the Markov process Z, we have

Zl = Z0 +

l
∑

i=0

(

1 + γN (Zi)
)

+Ml, (4)

where Ml is a local martingale which is actually a global martingale since the state space is finite.
Scaling (4), and viewing its trajectory as piece-wise constant, it follows that

ZNt =
Z[tN ]

N
= ZN0 +

1

N

[tN ]
∑

i=0

(

1 + γN (Zi)
)

+
M[tN ]

N

= ZN0 +
1

N

∫ [tN ]

0

(

1 + γN (Zs)
)

ds+
M[tN ]

N

= ZN0 +

∫ [t]

0

(

1 + γN (ZuN )
)

du+MN
t , (5)
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where the latter equality follows from a change of variables, and an introduction of notation for
the scaled martingale, MN

t =M[tN ]/N .
Using the integral version of (3), the triangle inequality, and Lipschitz continuity of γ, we find

that

sup
s∈[0,t]

|ZNs − z(s)| ≤ sup
s∈[0,t]

(

|ZN0 − z(0)|+
∫ [t]

0

∣

∣γN (ZuN )− γ(z(u))
∣

∣du+ |MN
t |

)

≤ |ZN0 − z(0)|+ CL

∫ [t]

0

sup
u∈[0,s]

|ZNu − z(u)|ds+ δN t+ sup
s∈[0,t]

|MN
s |

≤ |ZN0 − z(0)|+ CL

∫ t

0

sup
u∈[0,s]

|ZNu − z(u)|ds+ δN t+ sup
s∈[0,t]

|MN
s |. (6)

Define εN(T ) = sup
s∈[0,T ]

|ZNs − z(s)|, so that from (6) it follows that

εN(T ) ≤ |ZN0 − z(0)|+ δNT + sup
s∈[0,t]

|MN
s |+ CL

∫ T

0

εN(s)ds.

Recall that ZN0 = z(0) = 0, and because δNT + sups∈[0,T ] |MN
s | is nondecreasing in T , it follows

from Grönwall’s lemma that

εN(T ) ≤
(

δNT + sup
s∈[0,T ]

|MN
s |

)

exp{CLT }.

Using Minkowsky’s inequality for p ∈ [1,∞), strict monotonicity of exp{CLT } and δNT , and the
triangle inequality, we find

‖εN(T )‖p ≤ exp{CLT }
(

δNT + ‖ sup
s∈[0,T ]

|MN
s |‖p

)

.

Finally, using Doob’s martingale inequality for p > 1, we obtain

‖εN(T )‖p ≤ exp{CLT }
(

δNT + κp‖MN
T ‖p

)

. (7)

In L2, this inequality can be further simplified by computing the increasing process associated
to the martingale, i.e. for l ≥ 0,

E[(Ml)
2] = E[〈Ml〉] = E

[

l
∑

i=0

Var[γN (Zi)]
]

.

where,

Var[γN (x)] =

N−x−1
∑

k=0

(k + 1)2px,x+k+1 −
(

N−x−1
∑

k=0

(k + 1)px,x+k+1

)2

= ψN (x).

Then,

‖MN
t ‖22 = E[(MN

t )2] =
E[M2

[tN ]]

N2
=

1

N2

[tN ]
∑

i=0

ψN (Zi) ≤ CN t. (8)

This completes the proof. ✷

Corollary 2.4. If the distribution of the number of neighbors is such that δN → 0 as N → ∞ and
ψ̄N = o(N), the scaled process ZNt converges to zt in L

1 uniformly on compact time intervals.
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Corollary 2.5. If the number of initial items N is itself random and independent of the trajectory
of Z, meaning that Z can be constructed (i) as a functional of N and (ii) of other random variables
that are independent of N , then

E
[

sup
t∈[0,T ]

|ZN(t)− z(t)|
]

≤ E(δNT ) + 2E
√

CNT ) exp{CLT }.

Example 2.6 (Sparse Erdös–Rényi Graph with a Poissonian number of vertices). Suppose that
given N , the graph G = G(N, c/N) is a sparse Erdös–Rényi graph, i.e. pN(·, x) is the probability
mass function of the binomial distribution Bin(N − x − 1, c/N) with c > 0. Additionally, suppose
that N − 1 is Poisson distributed with parameter h. The mean and variance of pN (., x) are then
given by

γN (x) = (N − x− 1)
c

N
, ψN (x) = (N − x− 1)

c

N

(

1− c

N

)

.

Define γ(x) = c(1 − x). Condition (1) is satisfied and as Lipschitz constant CL = c suffices.
Moreover, δN = c/N and ψ̄N ≤ c. In this case the deterministic differential equation in (3) reads

ż = 1 + c(1− z) = (1 + c)− cz,

which can be explicitly solved, resulting in

z(t) = ρ+ (z0 − ρ)e−t with ρ =
1+ c

c
.

Since z(0) = 0, z(t) = ρ(1− e−t). Observe that lim
t→∞

z(t) = ρ > 1.

Furthermore, from Corollary 2.5 we obtain using Cauchy-Schwarz’s inequality that there exists
a constant C1 such that

E

[

sup
t∈[0,T ]

|ZN(t)− z(t)|
]

≤ cE(1/N) + E(1/
√
N)2

√
cT exp{cT }

≤ C1E(1/N)1/2 = C1

(1− exp(−h)
h

)1/2

.

2.1.2 Diffusion approximations with errors bounds

We now proceed and derive a functional central limit theorem. The convergence proof again uses
classical techniques, which we use to determine error bounds. To that end, we apply results of
[4] which are based on results by Komlós-Major-Tusnády. These results allow one to construct
a Brownian motion and either a Poisson process or random walk on the same probability space.
Since we are concerned with discrete time, we need to consider the random walk case, see also
[1]. In order to obtain explicit error bounds, we suppose stronger assumptions on the transitions
probabilities than would be needed when only proving convergence.

Proposition 2.7. If there exists a function p on (N,R+), and a sequence (εk)k=0,1,... such that

|pN (k, [Nx])− p(k, x)| ≤ εk
N
,

|p(x, x+ k)− p(y, y + k)| ≤Mεk|x− y|,
∑

k

k2|p(x, x+ k)1/2 − p(y, y + k)1/2|2 ≤M |x− y|2,
∑

k

kε
1/2
k <∞,

and if γ is twice differentiable with bounded first and second derivatives, then the process

WN
t =

√
N
(

ZNt − z(t)
)

(9)
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converges in distribution towards Wt, the unique solution of the stochastic differential equation

dW (t) = γ′(z(t))W (t)dt +
√

β′(t)dB1(t). (10)

Here, B1(t) denotes a standard Brownian motion, β(t) =
∫ t

0
ψ(z(s)ds, and z(t) is the solution of

(3). Furthermore,

E

(

sup
t≤T

|WN
t −Wt|

)

≤ C
log(N)√

N
. (11)

Proof. We adapt the results of Kurtz which were derived for continuous time Markov jump pro-
cesses. For doing so, we can replace the Poisson processes involved in the construction of the jump
processes by some random walks that can be used to construct discrete time Markov chains. We
can then use exactly the same steps as in [4], by first comparing the original process ZN with a
diffusion of the form

Z̃Nt =
1

N

∑

l≤N

lBl(N
t

∑

0

pN(l, Z̃
N
s )ds),

that is a sum of a finite number of scaled independent Brownian motions Bl.
Rewriting the inequalities in [4, (3.6)], and using a random walk version of the approximation

lemma of Komlós-Major-Tusnády [1], we obtain

E

(

sup
t≤T

|Z̃Nt − ZNt |
)

≤ C2
log(N)

N
. (12)

This leads using the results of [4, Section 3] to

E

(

sup
t≤T

|WN
t −Wt|

)

≤ C3
log(N)√

N
, (13)

which concludes the proof. ✷

Example 2.8 (ER case – Continued). The relation between the binomial coefficients and the
Poisson distribution are well studied. Defining

pN (k, [xN ]) =

(

N − [Nx]− 1

k

)

( c

N

)k(

1− c

N

)N−[Nx]−1

,

and using (for instance) the Stein-Chen method [7], we have that

|pN(k, [xN ])− p(k, x)| ≤ c

N
p(k, x),

which shows that the assumptions of Proposition 2.7 are satisfied.

2.2 LLN and CLT for the Hitting time

If N <∞, the exploration algorithm finishes at

T ∗
N = inf{τ ∈ N+|Zτ = N} ≤ N <∞. (14)

This time T ∗
N is a hitting time for the Markov process. Since the algorithm adds precisely one

node at each step, we have that the final number of active items is exactly T ∗
N , i.e.AT∗

N
= T ∗

N .
Because we wish to determine the statistical properties of AT∗

N
, we will seek not only a first-order

approximation for T ∗
N , but also prove a central limit theorem result as the initial number of items

N goes to infinity. From here on onward, we denote by T ∗ the solution to z(T ∗) = 1.

6



Proposition 2.9. For all δ > 0, there exists a constant Cδ depending only on δ, so that

P

[∣

∣

∣

T ∗
N

N
− T ∗

∣

∣

∣
≥ δ

]

≤ CδωN . (15)

Furthermore, if there exist constants ε, c1 > 0 so that γ(z(s)) ≤ 1 − ε for all s ≥ c1, then there
exists a constant C such that

∥

∥

∥

T ∗
N

N
− T ∗

∥

∥

∥

2
≤ CωN .

Proof. Remark that if |z(s)− ZNs | ≤ δ, then there exists a finite constant A > 0 such that

∣

∣

∣

T ∗
N

N
− T ∗

∣

∣

∣
≤ sup

t∈[z−1(1)−δ,z−1(1)+δ]

z−1(t) = sup
t∈[T∗−δ,T∗+δ]

z−1(t) ≤ Aδ. (16)

Hence the first claim follows directly from the observation that the event

{∣

∣

∣

T ∗
N

N
− T ∗

∣

∣

∣
≥ Aδ

}

⊂
{

|z(s)− ZNs | ≥ δ
}

. (17)

Now since Z0 = 0, and using that ZT∗

N
/N = z(T ∗) = 1 together with (2) and (4), we find

T ∗
N

N
− T ∗ =

∫ T∗

0

γ(z(s))ds−
∫

T
∗

N

N

0

γN (ZsN )ds−
MT∗

N

N
(18)

=

∫

T
∗

N

N
∧T∗

0

(γ(z(s))− γN (ZsN ))ds+

∫ T∗

T∗

N

N
∧T∗

γ(z(s))ds−
∫

T
∗

N

N

T∗

N

N
∧T∗

γN (ZsN )ds− MT∗

N

N
.

Then, using the triangle inequality,

∣

∣

∣

T ∗
N

N
− T ∗

∣

∣

∣
≤
∫

T
∗

N

N
∧T∗

0

|γ(z(s))− γN (ZsN )|ds+
∫ T∗

T∗

N

N
∧T∗

|γ(z(s))|ds

+

∫

T
∗

N

N

T∗

N

N
∧T∗

|γN (ZsN )|ds+ |MN
T∗

N

|.

Approximating γN by γ and using the Lipschitz continuity of γ and max(T ∗
N/N, T

∗) ≤ 1,

∣

∣

∣

T ∗
N

N
− T ∗

∣

∣

∣
≤ 2CL sup

s≤1
|z(s)− ZNs |+ δN +

∫ T∗

T∗

N

N
∧T∗

|γ(z(s))|ds+
∫

T
∗

N

N

T∗

N

N
∧T∗

|γ(z(s))|ds+ |MN
T∗

N

|.

Splitting cases, using that γ(z(s)) ≤ 1 − ε for 0 < c1 ≤ s, the bound ‖T ∗
N/N − T ∗‖1 ≤ 1 and

T ∗
N/N ≤ 1,

∣

∣

∣

T ∗
N

N
− T ∗

∣

∣

∣
≤ δN + 2CL sup

s≤1
|z(s)− ZNs |+ (1− ε)

∣

∣

∣

T ∗
N

N
− T ∗

∣

∣

∣
+ C21 T∗

N

N
≤c1

+ |MN
T∗

N

|.]

Now note that similarly to our previous argumentation before, there exists a δ such that

{T ∗
N

N
≤ c1 < T ∗

}

⊂ {|z(s)− ZNs | > δ}. (19)

Hence, using (19) together with Markov’s inequality and the Minkowski inequality, there exists a
constant C3 such that

ε
∥

∥

∥

T ∗
N

N
− T ∗

∥

∥

∥

2
≤ δN + C3‖sup

s≤1
|z(s)− ZNs |‖2 + ‖MN

T∗

N

‖2.
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Using Proposition 2.3, (8), and the fact that T ∗
N/N ≤ 1, we obtain that

∥

∥

∥

T ∗
N

N
− T ∗

∥

∥

∥

2
≤ δN + C4|| sup

s∈[0,1]

|z(s)− ZNs | ||2 + ||MN
T∗

N

||2,

≤ δN + C4ωN + ψ̄N/NE(T ∗
N/N) ≤ C5ωN .

This concludes the proof. ✷

Corollary 2.10. Suppose γ(1) 6= 1. The random variable
√
N(T ∗

N/N − T ∗) converges in L1 to
WT∗ , and

E

[
∣

∣

∣

√
N
(T ∗

N

N
− T ∗

)

(1− γ(1)) +WT∗

∣

∣

∣

]

≤
√
Nω2

N .

Here, WT∗ is a centered Gaussian random variable with variance

σ2=
mT∗

1− γ(1)
, (20)

where mt = E[W 2
t ] solves the differential system

ṁt = −2γ̇(zt)mt + β̇(t), m0 = 0. (21)

Proof. First, expand

∣

∣

∣

√
N
(T ∗

N

N
− T ∗

)

(1− γ(1)) +WT∗

∣

∣

∣
=

∣

∣

∣

√
N
(T ∗

N

N
− T ∗

)

(1 − γ(1)) +WN
T∗ +WT∗ −WN

T∗

∣

∣

∣

=
∣

∣

∣

√
N
(T ∗

N

N
− T ∗

)

(1− γ(1)) +
√
N(ZNT∗ − z(T ∗)) +WT∗ −WN

T∗

∣

∣

∣

=
∣

∣

∣

√
N
(T ∗

N

N
− T ∗

)

(1− γ(1)) +
√
N
(

∫ T∗

0

ds− z(T ∗) +

∫ T∗

0

γN (ZsN )ds+MN
T∗

)

+WT∗ −WN
T∗

∣

∣

∣

=
∣

∣

∣

√
N
(T ∗

N

N
− T ∗

)

(1− γ(1)) +
√
N
(

−
∫ T∗

0

γ(z(s))ds+

∫ T∗

0

γN (ZsN )ds+MN
T∗

)

+WT∗ −WN
T∗

∣

∣

∣

Then, use (18) to simplify (with the notation that
∫ b

a = −
∫ a

b when a > b)

. . . =
∣

∣

∣

√
N
(

−
∫

T
∗

N

N

0

γN (ZsN )ds−MN
T∗

N

)

− γ(1)
√
N
(T ∗

N

N
− T ∗

)

+
√
N

∫ T∗

0

γN (ZsN )ds+
√
NMN

T∗ +WT∗ −WN
T∗

∣

∣

∣

=
∣

∣

∣

√
N
(

∫ T∗

T∗

N

N

γN (ZsN )ds−MN
T∗

N

)

− γ(1)
√
N
(T ∗

N

N
− T ∗

)

+
√
NMN

T∗ +WT∗ −WN
T∗

∣

∣

∣

Finally, add and substract
∫ T∗

T∗

N
/N
γ(z(s))ds, and use the triangle inequality to arrive at

∣

∣

∣

∣

√
N

(

T ∗
N

N
− T ∗

)

(1− γ(1)) +WT∗

∣

∣

∣

∣

≤ |WT∗ −WN
T∗|+

√
N
∣

∣

∣

∫ T∗

T∗

N
/N

(γN (ZsN )− γ(z(s)))ds
∣

∣

∣

+
√
N
∣

∣

∣
]

∫ T∗

T∗

N
/N

γ(z(s))ds− γ(1)

(

T ∗
N

N
− T ∗

)

∣

∣

∣
+
√
N |MN

T∗ −MN
T∗

N

|. (22)

We now bound each of the terms on the right one by one. The first term can be bounded using
Proposition 2.7,

E[WN
T∗ −WT∗ ] ≤ C0

log(N)√
N

. (23)

8



The second term can be bounded using (in sequence) the triangle inequality, (1), Lipschitz
continuity of γ, and extending the integration range, i.e.

E

[
∣

∣

∣

√
N

∫ T∗

N
/N

T∗

γN (ZsN )− γ(z(s))ds
∣

∣

∣

]

≤
√
NE

[

sign
(T ∗

N

N
− T ∗

)

∫ T∗

N
/N

T∗

|γN (ZsN )− γ(z(s))|ds
]

≤
√
NE

[

sign
(T ∗

N

N
− T ∗

)

∫ T∗

N
/N

T∗

(δN + |γ(ZNs )− γ(z(s))|)ds
]

≤
√
NE

[

(

δN + CL sup
s≤1

|ZNs − z(s)|
)

∣

∣

∣

T ∗
N

N
− T ∗

∣

∣

∣

]

=
√
N
(

δN

∥

∥

∥

T ∗
N

N
− T ∗

∥

∥

∥

1
+ CL

∥

∥

∥
sup
s≤1

|ZNs − z(s)|
(T ∗

N

N
− T ∗

)
∥

∥

∥

1
. (24)

Then using Hölder’s inequality, and the bound ‖T ∗
N/N − T ∗‖1 ≤ 1, we find that

. . . ≤
√
N
(

δN

∥

∥

∥

T ∗
N

N
− T ∗

∥

∥

∥

1
+ C2

∥

∥

∥
sup
s≤1

|z(s)− ZNs |
∥

∥

∥

2

∥

∥

∥

T ∗
N

N
− T ∗

∥

∥

∥

2

)

≤
√
N
(

δN + C2

∥

∥

∥
sup
s≤1

|z(s)− ZNs |
∥

∥

∥

2

∥

∥

∥

T ∗
N

N
− T ∗

∥

∥

∥

2

)

. (25)

Hence

E

[∣

∣

∣

√
N

∫ T∗

N
/N

T∗

γN (ZsN )− γ(z(s))ds
∣

∣

∣

]

≤
√
N
(

δN + C2

∥

∥

∥
sup
s≤1

∣

∣z(s)− ZNs
∣

∣

∥

∥

∥

2

∥

∥

∥

T ∗
N

N
− T ∗

∥

∥

∥

2

)

≤ C4

√
Nω2

N (26)

After a Taylor expansion around T ∗, it follows for the third term that

√
N

∫ T∗

N
/N

T∗

γ(z(s))ds =
√
Nγ(1)

(T ∗
N

N
− T ∗

)

+
√
NRN ,

and we can subsequently bound using Proposition 2.9

√
NE|RN | ≤ 1

2 (sup |γ′|)E
[(T ∗

N

N
− T ∗

)2]

≤ C5

√
Nω2

N .

Using another Taylor expansion, we can expand the fourth term as

√
N

∫ T∗

0

γ(ZNs )− γ(z(s))ds =
√
N

∫ T∗

0

γ′(z(s))(ZNs − z(s)) + R̃N (s)ds

=

∫ T∗

0

γ′(z(s))WN
s ds+

√
N

∫ T∗

0

R̃N (s)ds

and then bound the fourth term using Proposition 2.3,
√
NE[R̃N ] ≤ 1

2

√
N(sup γ′′)‖ZNs − z(s)‖22 ≤ C5

√
Nω2

N . (27)

Finally, using Proposition 2.7, we obtain for the third term:

√
NE[|MN

T∗

N
/N −MN

T∗ |] ≤
√
NE[< MN

T∗

N
/N −MN

T∗ >]1/2 ≤
√
NC

1/2
N

∥

∥

∥

T ∗
N

N
− T ∗

∥

∥

∥

1
≤

√
Nω2

N .
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Remark that
√
Nω2

N → 0 when δN = o(N−1/4) and ψ̄N = o(N3/4), and then all these terms
converge to 0 as N → ∞. This proves that since γ(1) 6= 1, the limit is a Gaussian random variable
with variance

σ2 = E
[( WT∗

1− γ(1)

)2]

. (28)

Defining mt = E[W 2
t ], we find using Itô’s formula

E[W 2
t ] = E

[

∫ t

0

2WsdWs + (1/2)2βt

]

= 2

∫ t

0

γ′(z(s))E(W 2
s )ds+ β(t)

and hence mt satisfies the differential system

ṁt = −2γ̇(zt)mt + β̇(t), m0 = 0. (29)

This finishes the proof. ✷

Example 2.11 (ER case – Continued). For the ER graph γ(x) = ψ(x) = c(1 − x) and z(t) =
((1 + c)/c)(1 − e−ct). Solving z(T ∗) = 1 gives T ∗ = ln (1 + c)/c. The differential equation for β(t)
is given by

β̇(t) = ψ(z(s)) = (1 + c)e−ct − 1,

and the solution to (21) is then

mt = exp(−2ct)(1− exp(ct))(exp(ct)− 2c− 1)
1

2c
, (30)

ultimately leading to

σ2 =
mT∗

(1− γ(1))2
=

c

2(c+ 1)2
. (31)

2.3 Continuous time version

Our arguments that have led to our results for discrete time can be used in a similar fashion to
obtain results for continuous time. We state the convergence results for fixed time intervals without
proof.

Proposition 2.12. Suppose that there exist a function on R
+, γ such that

γN (x) = γ
( x

N

)

+ δN with δN →
N→∞

0. (32)

and suppose that the function g(x) = (1− x)γ(x) is a (CL)-Lipschitz function such that

gN(x) =
(

1− x

N

)

γN (x) = g
( x

N

)

+ αN with αN →
N→∞

0. (33)

Then

E
(

sup
t∈[0,T ]

|ZN(t)− z(t)|
)

≤ (α′
N + 2

√

λCNT ) exp{λCLT },

where α′
N goes to zero with N , CN = ψ̄N

N + (1+γ̄N )2

N and z(t) is the solution of the following
(deterministic) differential equation

ż = λ(1 − z)(1 + γ(z)). (34)
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Suppose that there exists a function ψ on R+ such that

lim
N→∞

∣

∣

∣
ψN (x) − ψ

( x

N

)∣

∣

∣
= 0.

The process

WN
t =

√
N
(

ZNt − z(t)
)

converges in distribution towards W which is the solution of the following stochastic differential
equation:

dW (t) = λ[−(1 + γ(z(t))) + γ′(z(t))(1− z(t))]W (t)dt+
√

β′(t)dB(t), (35)

where B(t) is a standard Brownian motion, β(t) = λ
∫ t

0
(1− z(s))(ψ(z(s)) + (1 + γ(z(s))2)ds, and

z(t) is the solution of (34).
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