Sample path of a BMC
New publications

Optimal clustering algorithms in Block Markov Chains

We have submitted Optimal clustering algorithms in Block Markov Chains, and it is currently under review. This is joint work between myself and Alexandre Proutiere. A preprint is available on arXiv.

Optimal clustering algorithms in Block Markov Chains

Abstract

This paper considers cluster detection in Block Markov Chains (BMCs). These Markov chains are characterized by a block structure in their transition matrix. More precisely, the n possible states are divided into a finite number of K groups or clusters, such that states in the same cluster exhibit the same transition rates to other states. One observes a trajectory of the Markov chain, and the objective is to recover, from this observation only, the (initially unknown) clusters. In this paper we devise a clustering procedure that accurately, efficiently, and provably detects the clusters. We first derive a fundamental information-theoretical lower bound on the detection error rate satisfied under any clustering algorithm. This bound identifies the parameters of the BMC, and trajectory lengths, for which it is possible to accurately detect the clusters. We next develop two clustering algorithms that can together accurately recover the cluster structure from the shortest possible trajectories, whenever the parameters allow detection. These algorithms thus reach the fundamental detectability limit, and are optimal in that sense.

Preprint

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

Download

Curious for more?

Head on over to My Articles for more of my work, and check out My Research for a peek into upcoming themes.

Jaron
Jaron Sanders received in 2012 M.Sc. degrees in Mathematics and Physics from the Eindhoven University of Technology, The Netherlands, as well as a PhD degree in Mathematics in 2016. After he obtained his PhD degree, he worked as a post-doctoral researcher at the KTH Royal Institute of Technology in Stockholm, Sweden. Jaron Sanders then worked as an assistant professor at the Delft University of Technology, and now works as an assistant professor at the Eindhoven University of Technology. His research interests are applied probability, queueing theory, stochastic optimization, stochastic networks, wireless networks, and interacting (particle) systems.
https://www.jaronsanders.nl