Clusters in animal movement data
New publications

Detection and Evaluation of Clusters within Sequential Data

We have submitted Detection and Evaluation of Clusters within Sequential Data, and it is currently under review. This is joint work between Alexander Van Werde, Albert Senen-Cerda, Gianluca Kosmella, and myself. A preprint is available on arXiv.


Motivated by theoretical advancements in dimensionality reduction techniques we use a recent model, called Block Markov Chains, to conduct a practical study of clustering in real-world sequential data. Clustering algorithms for Block Markov Chains possess theoretical optimality guarantees and can be deployed in sparse data regimes. Despite these favorable theoretical properties, a thorough evaluation of these algorithms in realistic settings has been lacking.
We address this issue and investigate the suitability of these clustering algorithms in exploratory data analysis of real-world sequential data. In particular, our sequential data is derived from human DNA, written text, animal movement data and financial markets. In order to evaluate the determined clusters, and the associated Block Markov Chain model, we further develop a set of evaluation tools. These tools include benchmarking, spectral noise analysis and statistical model selection tools. An efficient implementation of the clustering algorithm and the new evaluation tools is made available together with this paper.
Practical challenges associated to real-world data are encountered and discussed. It is ultimately found that the Block Markov Chain model assumption, together with the tools developed here, can indeed produce meaningful insights in exploratory data analyses despite the complexity and sparsity of real-world data.

Curious for more?

Head on over to My Articles for more of my work, and check out My Research for a peek into upcoming themes. You can also find out who is on our team right here: Academic Supervision.

Jaron Sanders received in 2012 M.Sc. degrees in Mathematics and Physics from the Eindhoven University of Technology, The Netherlands, as well as a PhD degree in Mathematics in 2016. After he obtained his PhD degree, he worked as a post-doctoral researcher at the KTH Royal Institute of Technology in Stockholm, Sweden. Jaron Sanders then worked as an assistant professor at the Delft University of Technology, and now works as an assistant professor at the Eindhoven University of Technology. His research interests are applied probability, queueing theory, stochastic optimization, stochastic networks, wireless networks, and interacting (particle) systems.